精英家教网 > 高中数学 > 题目详情
14.若数列An:a1、a2、…an(n≥2)满足|ak+1-ak|=d>0(k=1,2,…,n-1),则称An为F数列,并记S(An)=a1+a2+…+an
(1)写出所有满足a1=0,S(A4)≤0的F数列A4
(2)若a1=-1,n=2016,证明:F数列是递减数列的充要条件是an=-2016d;
(3)对任意给定的正整数n(n≥2),且d∈N*,是否存在a1=0的F数列An,使得S(An)=0?如果存在,求出正整数n满足的条件,如果不存在,请说明理由.

分析 (1)对照F数列的条件和求和概念,即可得到;
(2)可先证明必要性:由递减数列的定义,得到An是首项为-1,公差为-1的等差数列.所以a2016=-1+(2016-1)×(-1)=-2016;再证充分性:由新定义推出a2016≥a1-2015,又因为a1=-1,a2016=2016,所以a2016=a1-2015.得证;
(3)由a1=0,|ak+1-ak|=d>0,可得a2=d或-d,然后不适一般性验证即可.

解答 (1)解:由题意,F数列A4可以是0,d,0,-d或0,-d,0,d等;
(2)证明:必要性:因为F数列A2016是递减数列,
所以ak+1-ak=-1(k=1,2,…,2015).            
所以An是首项为-1,公差为-1的等差数列.
所以a2016=-1+(2016-1)×(-1)=-2016.
充分性:由于a2016-a2015≥-1,
a2015-a2014≥-1

a2-a1≥-1                              
所以a2016-a1≥-2015,即a2016≥a1-2015,
又因为a1=-1,a2016=2016,
所以a2016=a1-2015.
故an+1-an=-1<0(k=1,2,…,2015)即An是递减数列.
综上,结论得证;
(3)由a1=0,|ak+1-ak|=d>0,可得a2=d或-d,
a1=0,a2=d,a3=0,a4=-d,S(An)=0;
a1=0,a2=d,a3=2d,a4=-d,a5=0,a6=-d,a3=-2d,a4=-d,S(An)=0
不适一般性,可得n=4k,k∈N*,S(An)=0.

点评 本题考查新定义及理解,考查数列的运用,充分必要条件的证明,解题的关键在于对新定义的正确运用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x-a≥0}\end{array}\right.$,若|$\frac{y}{x-2}$|=$\frac{1}{2}$恒成立,则实数a的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有6名同学参加演讲比赛,编号分别为1,2,3,4,5,6,比赛结果设特等奖一名,A,B,C,D四名同学对于谁获得特等奖进行预测:
A说:不是1号就是2号获得特等奖;
B说:3号不可能获得特等奖;
C说:4,5,6号不可能获得特等奖;
D说:能获得特等奖的是4,5,6号中的一个.
公布的比赛结果表明,A,B,C,D,四人中只有一人判断正确.
根据以上信息,获得特等奖的是3号同学.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知AB=2,$cosB=\frac{1}{3}$.
(Ⅰ)若BC=3,求AC的长;
(Ⅱ)若点D为AC中点,且$BD=\frac{{\sqrt{17}}}{2}$,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知四面体P-ABC的所有顶点都在球O的球面上,PC为球O的直径,且球的体积为$\frac{4π}{3}$,AC=BC=1,AB=$\sqrt{3}$.则此四面体的表面积为(  )
A.$\sqrt{3}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{a}$=(m,n-1),$\overrightarrow{b}$=(1,2)(m、n为正数),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{1}{m+1}$+$\frac{2}{n+1}$的最小值是$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某开山车制造公司,每天生产某型号的开山车x台(0<x≤10,x∈N*)时,每天销售收入函数f(x)=ax2+630lnx+15(单位:万元),其每天成本满足g(x)=20x-a(单位:万元).已知该公司不生产这种型号的开山车时,其每天成本为5万元
(Ⅰ)求利润函数R(x)的解析式(单位:万元);
(Ⅱ)问该公司每天生产多少辆大型开山车时,利润最大,最大利润是多少?(精确到0.1)
(参考数据ln7=1.95,ln8=2.08,ln9=2.20)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{{5-{{(x-3)}^2}}}{x}$(x>0)的最大值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+x+a(a∈R).
(1)当a=1时,解不等式f(x)≥3;
(2)若f(x)≥3恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案