精英家教网 > 高中数学 > 题目详情
9.不等式x2-x-2≤0解集为A,函数y=lg(x-1)的定义域为B,则A∩B=(  )
A.(1,2)B.[1,2]C.[1,2)D.(1,2]

分析 求出已知不等式的解集确定出A,求出B中函数的定义域确定出B,找出两集合的交集即可.

解答 解:不等式x2-x-2≤0,
变形得:(x-2)(x+1)≤0,
解得:-1≤x≤2,即A=[-1,2],
由函数y=lg(x-1),得到x-1>0,即x>1,
∴B=(1,+∞),
则A∩B=(1,2].
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知α,β都是锐角,$cosα=\frac{1}{7}$,$cos({α+β})=-\frac{11}{14}$,则cosβ=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设非零向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{5π}{6}$,且|$\overrightarrow{a}$|=|$\overrightarrow{a}+\overrightarrow{b}$|,则$\frac{|\overrightarrow{a}+t\overrightarrow{b}|}{|\overrightarrow{b}|}$(t∈R)的最小值是$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,a1=1,a2=6,点(an-an-1,an+1)在函数f(x)=4x的图象上
(1)求证:数列{an+1-2an}是等比数列,并求出数列{an}的通项公式;
(2)数列{an}的前n项和为Sn,求证:Sn<(n-1)•2n+1+2;
(3)若Cn=3n-λ•(-1)n•$\frac{a_n}{{n-\frac{1}{2}}}$,(n∈N*,λ为非零实数),对任意n∈N*,Cn+1>Cn恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用0,1,2组成不同的三位数,一共有4种方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)化简:$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$
(2)已知tan(2π-α)=3,求sin2α+sinαcosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题p:不等式ax2+2ax+1>0的解集为R,命题q:0<a<1,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为:$\stackrel{∧}{y}$=0.85x-85.71,则下列结论中不正确的是(  )
A.3与3x2+2ax+b=0具有正的线性相关关系
B.回归直线过样本点的中心($\overline{x}$,$\overline{y}$)
C.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
D.若该大学某女生身高增加1cm,则其体重约增加0.85kg

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\sqrt{x+lnx-a}$,若存在x∈[1,e],使f(f(x))=x成立,则实数a的取值范围是[e+1-e2,0].

查看答案和解析>>

同步练习册答案