精英家教网 > 高中数学 > 题目详情
7.集合A={3,2a},B={a,b},则A∩B={4},则a+b=6.

分析 根据集合的定义与运算性质,先求出a、b的值,再计算a+b的值.

解答 解:∵集合A={3,2a},B={a,b},且A∩B={4},
∴$\left\{\begin{array}{l}{{2}^{a}=4}\\{b=4}\end{array}\right.$,
解得a=2,b=4;
∴a+b=6.
故答案为:6.

点评 本题考查了集合的定义与运算性质,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若复数z满足z(1+i)=1+ai(a∈R),则z在复平面内对应的点不可能在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x>0,y>0,且2x+8y-xy=0,则x+y的最小值是(  )
A.16B.20C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足(x+5)2+(y-12)2=196,那么$\sqrt{{x^2}+{y^2}}$的最小值为(  )
A.4B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设Sn是等比数列{an}的前n项和,S4=5S2,则$\frac{{{a_3}•{a_8}}}{a_5^2}$的值为±2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知π为圆周率,a、b、c、d∈Q,命题p为:若aπ+b=cπ+d,则a=c且b=d.
(1)写出¬p命题并判断真假;
(2)写出p的逆命题、否命题、逆否命题并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c.
(1)若b2+c2=a2+bc,求角A的大小;
(2)若sin2A=2cosAsinB,判断三角形的形状;
(3)若cosC+(cosA-$\sqrt{3}$sinA)cosB=0,a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数,其中0≤α<π),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ=2cosθ.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)已知P(2,$\sqrt{3}$),直线l与曲线C相交于A,B两点,求$\overrightarrow{AP}•\overrightarrow{PB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学参加科普知识竞赛,需要回答3个问题.竞赛规则规定:每题回答正确得30分,不答或回答不正确得-30分.假设这名同学每题回答正确的概率为0.8,且各题回答正确与否相互之间没有影响,
(1)求这名同学回答这3个问题的总得分X的概率分布列;
(2)若不少于30分就算入围,求这名同学入围的概率.

查看答案和解析>>

同步练习册答案