分析 (1)由已知可得b2+c2-a2=bc,利用余弦定理可求cosA,结合范围A∈(0°,180°),可求A的值.
(2)利用二倍角的正弦函数公式可求2cosAsinB=2sinAcosA,可得:cosA=0,或sinB=sinA,结合范围A,B∈(0°,180°),即可得解A=90°,或A=B,从而判断三角形的形状.
(3)由已知利用三角函数恒等变换的应用可得:sinA(sinB-$\sqrt{3}$cosB)=0,根据sinA≠0,可求tanB,进而可得B=60°,由a+c=1,利用余弦定理,二次函数的性质即可得解b的范围.
解答 解:(1)∵b2+c2=a2+bc,可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0°,180°),
∴A=60°.
(2)∵sin2A=2cosAsinB=2sinAcosA,
∴可得:cosA=0,或sinB=sinA,
∵A,B∈(0°,180°),
∴A=90°,或A=B,
故三角形的形状为等腰或直角三角形.
(3)∵由已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0,
∴-cos(A+B)+cosAcosB-$\sqrt{3}$sinAcosB=0,可得:sinA(sinB-$\sqrt{3}$cosB)=0,
∵sinA≠0,
∴得tanB=$\sqrt{3}$,
∴B=60°,
∴由a+c=1,余弦定理得:b2=a2+c2-ac=(a+c)2-3ac=1-3a(1-a)=3(a-$\frac{1}{2}$)2+$\frac{1}{4}$,a∈(0,1),
∴可得:$b∈[\frac{1}{4},1)$.
点评 本题考查了余弦定理、三角函数恒等变换的应用、三角函数的内角和定理、二次函数的图象和性质,考查了转化思想和配方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=sin|x| | B. | y=cos|x| | C. | y=|tanx| | D. | y=-ln|sinx| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为2π | |
| B. | 函数f(x)的图象关于点(-$\frac{5π}{12}$,0)对称 | |
| C. | 将函数f(x)的图象向左平移$\frac{π}{6}$个单位得到的函数图象关于y轴对称 | |
| D. | 函数f(x)的单调递增区间是[kπ+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$](K∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com