精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<$\frac{π}{2}$)的部分图象如图所示,下列说法正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点(-$\frac{5π}{12}$,0)对称
C.将函数f(x)的图象向左平移$\frac{π}{6}$个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是[kπ+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$](K∈Z)

分析 首先,根据图象得到振幅和A=2,ω=2,从而得到f(x)=2sin(2x+φ),然后,将点($\frac{π}{12}$,2)代入得到φ=$\frac{π}{3}$,从而可得函数解析式,利用正弦函数的对称性及单调性,判断各个选项是否正确,从而得出结论.

解答 解:根据图象得到:A=2,$\frac{T}{4}$=$\frac{π}{3}$-$\frac{π}{12}$,
∴T=π,故A错误;
∴$\frac{2π}{ω}$=π,
∴ω=2,
∴f(x)=2sin(2x+φ),
将点($\frac{π}{12}$,2)代入得到2sin($\frac{π}{6}$+φ)=2,|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$).
令x=-$\frac{5π}{12}$,可得:f(-$\frac{5π}{12}$)=2sin(-$\frac{5π}{6}$+$\frac{π}{3}$)=-2,故B错误;
f(x+$\frac{π}{6}$)=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]=2sin(2x+$\frac{2π}{3}$),由于f(0)=2sin$\frac{2π}{3}$=$\sqrt{3}$不是最大值,故C错误;
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ-$\frac{π}{2}$,k∈Z,可得:kπ+$\frac{7π}{12}$≤x≤kπ+$\frac{13π}{12}$,K∈Z,可得函数f(x)的单调递增区间是[kπ+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$](K∈Z),故D正确.
故选:D.

点评 本题重点考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象与性质及其运用,考查了数形结合思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$(x∈R)
(1)分别计算f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值;
(2)由(1)你发现了什么结论?并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.集合A={x|x2-2x=0},则集合A的子集个数是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设Sn是等比数列{an}的前n项和,S4=5S2,则$\frac{{{a_3}•{a_8}}}{a_5^2}$的值为±2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a+b=-2,b<0,则当a=2时,$\frac{1}{2|a|}$-$\frac{|a|}{b}$取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c.
(1)若b2+c2=a2+bc,求角A的大小;
(2)若sin2A=2cosAsinB,判断三角形的形状;
(3)若cosC+(cosA-$\sqrt{3}$sinA)cosB=0,a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)={({\frac{1}{3}})^x}+{x^2}-2$的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}sinxcosx-{cos^2}x+\frac{1}{2}$.
(1)求函数f(x)在$x∈[{\frac{π}{4},\frac{π}{2}}]$上的最值;
(2)在△ABC中,c=$\sqrt{7}$,f(C)=1,若向量$\overrightarrow m=(1,sinA),\overrightarrow n=(3,sinB)$共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$f(x)={2^x}-{(\frac{1}{3})^x},x∈[-1,2]$的最大值为$\frac{35}{9}$.

查看答案和解析>>

同步练习册答案