精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$(x∈R)
(1)分别计算f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值;
(2)由(1)你发现了什么结论?并加以证明.

分析 (1)利用函数的解析式真假求解函数值即可.
(2)利用(1)可知f(x)+f($\frac{1}{x}$)=1.然后证明即可.

解答 解:(1)函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$(x∈R),
f(2)+f($\frac{1}{2}$)
=$\frac{4}{1+4}$+$\frac{\frac{1}{4}}{1+\frac{1}{4}}$
=$\frac{4}{5}+\frac{1}{5}$
=1,
f(3)+f($\frac{1}{3}$)
=$\frac{9}{1+9}$+$\frac{\frac{1}{9}}{1+\frac{1}{9}}$
=$\frac{9}{10}$$+\frac{1}{10}$
=1,
f(4)+f($\frac{1}{4}$)
=$\frac{16}{1+16}$+$\frac{\frac{1}{16}}{1+\frac{1}{16}}$
=$\frac{16}{17}$+$\frac{1}{17}$
=1.
(2)由(1)可知f(x)+f($\frac{1}{x}$)=1.
证明:f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$
=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$
=1.

点评 本题考查函数的值的求法,函数与方程的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知$\frac{1}{3}$≤a≤1,若函数  f(x)=ax2-2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a).
(1)求g(a)的函数表达式;
(2)写出函数g(a)单调增区间与单调减区间(不必证明),并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙两人约定在下午1 时到2 时之间到某站乘公共汽车,又这段时间内有四班公共汽车它们的开车时刻分别为 1:15、1:30、1:45、2:00.如果它们约定(1)见车就乘;(2)最多等一辆车.假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在1时到2 时的任何时刻到达车站是等可能的.求甲、乙同乘一车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)(a≤x≤b),集合M={(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=0},则集合M的子集的个数为(  )
A.2B.1或0C.1D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若不等式x2-logax<0对x∈(0,$\frac{1}{2}$)恒成立,则实数a的取值范围是(  )
A.0<a<1B.$\frac{1}{16}$≤a<1C.a>1D.0<a≤$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个函数:y=sin|x|,y=cos|x|,y=|tanx|,y=-ln|sinx|,以π为周期,在(0,$\frac{π}{2}$)上单调递减且为偶函数的是(  )
A.y=sin|x|B.y=cos|x|C.y=|tanx|D.y=-ln|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当a=3,b=5,c=7时,执行如图所示的程序框图,输出的m值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=|x|+|x+10|.
(Ⅰ)求f(x)≤x+15的解集M;
(Ⅱ)当a,b∈M时,求证:5|a+b|≤|ab+25|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<$\frac{π}{2}$)的部分图象如图所示,下列说法正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点(-$\frac{5π}{12}$,0)对称
C.将函数f(x)的图象向左平移$\frac{π}{6}$个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是[kπ+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$](K∈Z)

查看答案和解析>>

同步练习册答案