精英家教网 > 高中数学 > 题目详情
15.如图,抛物线y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C($\frac{7}{2}$p,0),AF与BC相交于点E.若|CF|=3|AF|,且△ACE的面积为3,则p的值为2$\sqrt{2}$.

分析 如图所示,F($\frac{p}{2}$,0),|由于AB∥x轴,|CF|=3|AF|,|AB|=|AF|,可得|CF|=3|AB|=3p,|CE|=3|BE|.利用抛物线的定义可得xA,代入可取yA,再利用S△ACE=3,即可得出.

解答 解:如图所示,F($\frac{p}{2}$,0),|CF|=3p.
∵AB∥x轴,|CF|=3|AF|,|AB|=|AF|,
∴|CF|=3|AB|=3p,|CE|=3|BE|.
∴xA+$\frac{p}{2}$=p,解得xA=$\frac{p}{2}$,
代入可取yA=p,
∴S△ACE=$\frac{3}{4}$S△ABC=$\frac{3}{4}×\frac{1}{2}×p×p$=3
解得p=2$\sqrt{2}$.
故答案为2$\sqrt{2}$.

点评 本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.顶点在x轴上,两顶点间的距离为8,离心率e=$\frac{5}{4}$的双曲线为(  )
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{25}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0的左、右焦点分别为F1、F2,以F1F2为直径的圆被直线$\frac{x}{a}$+$\frac{y}{b}$=1截得的弦长为$\sqrt{6}$a,则双曲线的离心率为$\sqrt{2}$:

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.椭圆$\frac{x^2}{16}$+$\frac{y^2}{12}$=1的左顶点到右焦点的距离为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平行四边形ABCD的顶点A为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的中心,顶点B为双曲线的右焦点,顶点C在y轴正半轴上,顶点D恰好在该双曲线左支上,若∠ABC=45°,则此双曲线的离心率是(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}+3}}{2}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是定义R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”(  )
A.既不充分也不必要条件B.充分非必要条件
C.必要非充分条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知AC,BD为圆O:x2+y2=9的两条相互垂直的弦,垂足为M(1,$\sqrt{2}$),则四边形ABCD的面积的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2-4x+2,函数g(x)=($\frac{1}{3}$)f(x)
(Ⅰ)若y=f(x)的对称轴是x=2,求f(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下求出g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设α为平面,a、b为两条不同的直线,则下列叙述正确的是(  )
A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥α
C.若α∥β,a?α,b?β则a∥bD.若a∥α,a⊥b,则b⊥α

查看答案和解析>>

同步练习册答案