精英家教网 > 高中数学 > 题目详情
13.已知复数$z=\frac{{1+2{i^3}}}{2+i}$(i为虚数单位),则z在复平面内所对应点的坐标为(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

分析 利用复数定义所在、几何意义即可得出.

解答 解:∵复数$z=\frac{{1+2{i^3}}}{2+i}$=$\frac{1-2i}{2+i}$=$\frac{(1-2i)(2-i)}{(2+i)(2-i)}$=$\frac{-5i}{5}$=-i.
故其对应的点的坐标为(0,-1),
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知两集合$A=\left\{{x\left|{{x^2}+x-2≤0}\right.}\right\},B=\left\{{x\left|{\frac{2x-1}{x}>0}\right.}\right\}$,则A∩B=(  )
A.[-2,0)B.$({\frac{1}{2},1}]$C.$[{-2,0})∪({\frac{1}{2},1}]$D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设数列{an}的前n项和为Sn.若a2=12,Sn=kn2-1(n∈N*),则数列{$\frac{1}{{S}_{n}}$}的前n项和为$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=2xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出命题p:若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β;命题q:向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{b}$=(λ,1)的夹角为钝角的充要条件为λ∈(-$\frac{1}{2}$,+∞).关于以上两个命题,下列结论中正确的是(  )
A.命题“p∨q”为假B.命题“p∧q”为真C.命题“p∨¬q”为假D.命题“p∧¬q”为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等差数列{an}的前n项和为Sn,若$\frac{{S}_{n}}{{a}_{n}}$=$\frac{n+1}{2}$,则下列结论中正确的是(  )
A.$\frac{{a}_{2}}{{a}_{3}}$=2B.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{3}{2}$C.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{2}{3}$D.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程ex=5-x的根所在的大致区间为(  )
A.($\frac{1}{2}$,1)B.(1,$\frac{3}{2}$)C.($\frac{3}{2}$,2)D.(2,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第一组[160,164],第二组[164,168],…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172cm以上(含172cm)的人数;
(Ⅲ)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:若ξ-N(μ,σ2),则p(μ-σ<ξ≤μ+σ)=0.6826,p(μ-2σ<ξ≤μ+2σ)=0.9544,p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.圆x2+y2-4x+2y+2=0的圆心坐标为(2,-1),半径为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案