精英家教网 > 高中数学 > 题目详情
8.给出命题p:若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β;命题q:向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{b}$=(λ,1)的夹角为钝角的充要条件为λ∈(-$\frac{1}{2}$,+∞).关于以上两个命题,下列结论中正确的是(  )
A.命题“p∨q”为假B.命题“p∧q”为真C.命题“p∨¬q”为假D.命题“p∧¬q”为真

分析 命题p:由已知可得α∥β或相交,即可得出真假;命题q:向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{b}$=(λ,1)的夹角为钝角的充要条件为$\left\{\begin{array}{l}{\overrightarrow{a}•\overrightarrow{b}<0}\\{且不异向共线}\end{array}\right.$,解出即可判断出真假.再利用复合命题真假的判定方法即可得出.

解答 解:命题p:若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β或相交,因此是假命题;
命题q:向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{b}$=(λ,1)的夹角为钝角的充要条件为$\left\{\begin{array}{l}{\overrightarrow{a}•\overrightarrow{b}<0}\\{且不异向共线}\end{array}\right.$,-2λ-1<0,解得$λ>-\frac{1}{2}$,由-λ+2=0,解得λ=2,此时$\overrightarrow{a}$与$\overrightarrow{b}$异向共线,因此向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{b}$=(λ,1)的夹角为钝角的充要条件为λ∈(-$\frac{1}{2}$,+∞)且λ≠2,因此是假命题.
关于以上两个命题,下列结论中正确的是“p∨q”为假命题.
故选:A.

点评 本题考查了不等式的解法、简易逻辑的判定方法、向量数量积运算性质、空间位置关系的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知复数$z=\frac{3+i}{1-i}$,则$|{\overline z}|$=(  )
A.1B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线l1,l2,l3相交于A(2,5),B(-2,1),C(8,-3).如图所示:
(1)用不等式组表示图中的阴影部分;
(2)设目标函数为z=3x-4y,图中的阴影部分是对x,y的约束条件,求在此约束条件下,目标函数的最大值和最小值;
(3)设目标函数为z=3x+4y,图中的阴影部分是对x,y的约束条件,求在此约束条件下,目标函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则l1与l2间的距离为(  )
A.$\sqrt{2}$B.$\frac{8\sqrt{2}}{3}$C.$\sqrt{3}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数$z=\frac{{1+2{i^3}}}{2+i}$(i为虚数单位),则z在复平面内所对应点的坐标为(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设i是虚数但单位,则复数$z=\frac{2i+3}{1-i}$的共轭复数的虚部为(  )
A.$-\frac{1}{2}$B.$-\frac{5}{2}$C.$\frac{1}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某高校从2015年招收的大一新生中,随机抽取60名学生,将他们的2015年高考数学成绩(满分150分,成绩均不低于90分的整数)分成六段[90,100),[100,110)…[140,150),后得到如图所示的频率分布直方图.
(1)求图中实数a的值;
(2)若该校2015年招收的大一新生共有960人,试估计该校招收的大一新生2015年高考数学成绩不低于120分的人数;
(3)若用分层抽样的方法从数学成绩在[90,100)与[140,150]两个分数段内的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至少有1人在分数段[90,100)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,则“a=b”是“acosB=bcosA”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案