精英家教网 > 高中数学 > 题目详情
(1)已知x>0,求x+
1
x
的最值;
(2)已知x<0,求x+
1
x
的最值.
考点:基本不等式
专题:不等式的解法及应用
分析:利用基本不等式即可得出.
解答: 解:(1)当x>0时,x+
1
x
≥2
x•
1
x
=2,当且仅当x=1时取等号,
x+
1
x
的最小值为2,无最大值.
(2)∵x<0,∴-x>0,
x+
1
x
=-(-x+
1
-x
)
≤-2
-x•
1
-x
=-2,当且仅当x=-1时取等号.
x+
1
x
的最大值为-2,无最小值.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F2(1,0),点A(1,
3
2
)在椭圆上.
(1)求椭圆方程;
(2)点M(x0,y0)在圆x2+y2=b2上,点M在第一象限,过点M作圆x2+y2=b2的切线交椭圆于P、Q两点,问|
F2P
|+|
F2Q
|+|
PQ
|是否为定值?如果是,求出该定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一工厂有A,B两台独立工作的机器,平均来说,每个机器24小时发生故障一次,若修复机器A需要一小时,修复机器B需要2小时,试求生产在24小时内被中断的概率.(假定故障发生时间可落在这段时间内的任一时刻)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,AC∩BD=O,AA1=2
3
,BD⊥A1A,∠BAD=∠A1AC=60°,点M是棱AA1的中点.
(Ⅰ)求证:A1C∥平面BMD;
(Ⅱ)求证:A1O⊥平面ABCD;
(Ⅲ)求直线BM与平面BC1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设U=R,集合A={x丨x<-4或x>1},B={x丨-2<x<3},求∁u(A∩B)和∁u(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,满足x+y-2xy+4=0,求xy最小值和x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log62=a,则用a表示log36为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有19人围成一圈,从中选出4个人,要求这4个人恰好有3人相邻,一共有
 
种不同的选法.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的首项为2,公比为3,前n项和为Sn,若log3[
1
2
an•(S4m+1)]=9,则
1
n
+
4
m
的最小值是
 

查看答案和解析>>

同步练习册答案