精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3x-1
(x∈[2,6]).试判断此函数在x∈[2,6]上的单调性并求函数在x∈[2,6]上的最大值和最小值.
分析:先用定义判断单调性,根据单调性可求得函数的最大值最小值.
解答:解:设x1、x2是区间[2,6]上的任意两个实数,且x1<x2
f(x1)-f(x2)=
3
x1-1
-
3
x2-1

=
3[(x2-1)-(x1-1)]
(x1-1)(x2-1)

=
3(x2-x1)
(x1-1)(x2-1)

由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,
于是f(x1)-f(x2)>0,即f(x1)>f(x2).
所以函数f(x)=
3
x-1
是区间[2,6]上的减函数.
因此,函数f(x)=
3
x-1
在区间的两个端点上分别取得最大值与最小值,
最大值f(2)=3,最小值f(6)=
3
5
点评:本题考查函数单调性的判断及其应用,考查函数最值的求解,数基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案