精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若曲线处的切线方程为,求的极值;

(2)若,是否存在,使的极值大于零?若存在,求出的取值范围;若不存在,请说明理由.

【答案】(1),无极小值;(2).

【解析】试题分析:(1)求出函数的导数,计算,得到关于的方程组,解出即可求得的表达式,从而求出函数的单调区间,进而求出函数的极值即可;

2)求出的导数,通过讨论的取值范围,判断函数的单调性,从而确定的范围即可。

试题解析:(1)依题意,

又由切线方程可知, ,斜率

所以,解得,所以

所以

时, 的变化如下:

+

极大值

所以,无极小值.

2)依题意, ,所以

时, 上恒成立,故无极值;

时,令,得,则,且两根之积

不妨设,则,即求使的实数的取值范围.

由方程组消去参数后,得

构造函数,则,所以上单调递增,

,所以解得,即,解得.

①②可得, 的范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地

区调查了500位老年人,结果如下:

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人需要志愿者提供帮助与性别有

关?

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)讨论函数的极值;

(2)当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有 个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,

约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为 的人去参加

甲游戏,掷出点数大于 的人去参加乙游戏.

1)求这 个人中恰有 个人去参加甲游戏的概率;

2)求这 个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).

(1)若g(x)=m有实根,求m的取值范围;

(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明:<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2-2ax+2+b(a≠0)在区间[2,3]上有最大值5,最小值2.

(1)求a,b的值;

(2)若b<1,g(x)=f(x)-2mx在[2,4]上单调,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,证明函数是单调函数;

(2)当时,函数在区间上的最小值是,求的值;

(3)设是函数图象上任意不同的两点,记线段的中点的横坐标是,证明直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,下图为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.

(1)求出

(2)利用合情推理的“归纳推理思想”归纳出的关系式,

(3)根据你得到的关系式求的表达式

查看答案和解析>>

同步练习册答案