精英家教网 > 高中数学 > 题目详情
13.如图所示,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一点,且CE=2PE.
(1)求证:AE⊥平面PBC;
(2)求二面角A-PC-D的大小.

分析 (1)先证BC⊥平面PAC,可得AE⊥BC,再用勾股定理的逆定理证AE⊥PC,由此能证明AE⊥平面PBC.
(2)设AC中点为O,CE中点为M,连DO,OM,DM,由三垂线逆定理知DM⊥PC,∠OMD为二面角A-PC-D的平面角,由此能求出二面角A-PC-D的大小.

解答 证明:(1)∵PA⊥平面ABCD,BC?平面ABCD,∴BC⊥PA,
∵底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,
∴AC=BC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∴AC2+BC2=AB2,∴AC⊥BC,
∵AC∩PA=A,∴BC⊥平面PAC,∴AE⊥BC,
PC=$\sqrt{1+2}$=$\sqrt{3}$,
∵E是棱PC上一点,且CE=2PE,
∴PE=$\frac{\sqrt{3}}{3}$,CE=$\frac{2\sqrt{3}}{3}$,
∴PA2-PE2=AC2-CE2,∴AE⊥PC,
∵BC∩PC=C,∴AE⊥平面PBC.(4分)
解:(2)设AC中点为O,CE中点为M,连DO,OM,DM,
则OM∥AE,DO⊥平面PAC,由(1)知AE⊥PC,∴OM⊥PC,
由三垂线逆定理知DM⊥PC,∠OMD为二面角A-PC-D的平面角,
∵$DO=\frac{{\sqrt{2}}}{2}$,$OM=\frac{1}{2}AE=\frac{{\sqrt{6}}}{6}$$tan∠OMD=\frac{OD}{OM}=\sqrt{3}$,
∴∠OMD=60°,
∴二面角A-PC-D的大小60°.(12分)

点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知复数z=k-2i(k∈R)的共轭复数$\overline{z}$,且z-($\frac{1}{2}$-i)=$\frac{\overline{z}}{2}$-2i.
(Ⅰ)求k的值;
(Ⅱ)若过点(0,-2)的直线l的斜率为k,求直线l与曲线y=$\sqrt{x}$以及y轴所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点与抛物线y2=16x的焦点重合,且双曲线的离心率等于2,则该双曲线的渐近线方程为(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\sqrt{2}x$D.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{2}$,AC=2$\sqrt{3}$,AA1=1,∠BAC=90°,D为线段BC的中点.
(1)求异面直线B1D与AC所成角的大小;
(2)求二面角D-A1B1-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,ABCD为边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE与平面ABCD所成角为45°,G,H分别为AB,EC的中点.(1)求证:GH∥平面ADEF;
(2)求二面角F-BD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱柱ABC-A1B1C1中,正方形AA1B1B的边长是整数,点H是其中心,C1H⊥平面AA1B1B,且C1H=$\sqrt{6}$,三棱柱ABC-A1B1C1的侧面积为4($\sqrt{7}$+1).
(Ⅰ)求AA1
(Ⅱ)求二面角A-BC-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:
(1)求证:AB⊥CD;
(2)若M为AD的中点,求二面角A-BM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为(  )
A.1000$\sqrt{2}$πB.125$\sqrt{2}$πC.$\frac{1000\sqrt{2}π}{3}$D.$\frac{125\sqrt{2}π}{3}$

查看答案和解析>>

同步练习册答案