精英家教网 > 高中数学 > 题目详情
1.已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=42.

分析 根据等比数列的通项公式,结合题意,即可求出对应的结果.

解答 解:等比数列{an}中,a1=3,
a1+a3+a5=a1+a1q2+a1q4=3(1+q2+q4)=21,
即1+q2+q4=7,
解得q2=2或q2=-3(不合题意,舍去);
所以a3+a5+a7=a1q2(1+q2+q4)=3×2×7=42.
故答案为:42.

点评 本题考查了等比数列的通项公式与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某汽车厂为某种型号汽车的外壳设计了4种不同的式样和2种不同的颜色,那么该型号汽车共有8种不同的外壳.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等腰梯形ABCD中,AB∥CD,DC=AD=2,∠A=60°,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=(  )
A.6B.-6C.-3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若向量$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,$\sqrt{3}}$),且$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$垂直,则实数m的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某市16个交通路段中,在早高峰期间与7个路段比较拥堵,现从中任意选10个路段,用X表示这10个路段中交通比较拥堵的路段数,则P(X=4)=(  )
A.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$B.$\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$
C.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$D.$\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,长方体ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一点,且满足B1D⊥平面ACE.
(Ⅰ)求证:A1D⊥AE;
(Ⅱ)求二面角D-AE-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一点,且CE=2PE.
(1)求证:AE⊥平面PBC;
(2)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图△ABC的角平分线AD的延长线交它的外接圆于点E.
(Ⅰ)证明:△ABE∽△ADC;
(Ⅱ)若BC为△ABC外接圆的直径且AD•AE=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,且(Sn-1)2=anSn(n∈N*).
(1)求出S1,S2,S3的值,并求出Sn及数列{an}的通项公式;
(2)设bn=(-1)n+1•(an+an+1)(n∈N*),求数列{bn}的前n项和Tn
(3)设cn=(n+1)•an(n∈N*),在数列{cn}中取出m(m∈N*且m≥3)项,按照原来的顺序排列成一列,构成等比数列{dn},若对任意的数列{dn},均有d1+d2+…+dn≤M,试求M的最小值.

查看答案和解析>>

同步练习册答案