精英家教网 > 高中数学 > 题目详情
2.已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:
(1)求证:AB⊥CD;
(2)若M为AD的中点,求二面角A-BM-C的余弦值.

分析 (1)推导出AB⊥BD,从而AB⊥面BCD,由此能证明AB⊥CD.
(2)以B为原点,在平面BCD中过B作BD的垂线为x轴,BD为y轴,BA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BM-C的余弦值.

解答 证明:(1)∵AB=BD,∠A=45°,∴AB⊥BD
又∵平面ABD⊥平面BCD,且BD是平面ABD与平面BCD的交线,
∴AB⊥面BCD,
∵CD?平面BCD,∴AB⊥CD.
解:(2)以B为原点,在平面BCD中过B作BD的垂线为x轴,
BD为y轴,BA为z轴,建立空间直角坐标系,
则B(0,0,0),C(1,1,0),
D(0,1,0),A(0,0,1),M(0,$\frac{1}{2},\frac{1}{2}$),
$\overrightarrow{BC}=(1,1,0),\overrightarrow{BM}=(0,\frac{1}{2},\frac{1}{2})$,
面ABM的法向量为$\overrightarrow{n}$=(1,0,0),
设平面BMC的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=x+y=0}\\{\overrightarrow{m}•\overrightarrow{BM}=\frac{1}{2}y+\frac{1}{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-1,1),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
观察知二面角A-BM-C为钝角,
故二面角A-BM-C的余弦值为-$\frac{\sqrt{3}}{3}$.

点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题上,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.等腰梯形ABCD中,AB∥CD,DC=AD=2,∠A=60°,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=(  )
A.6B.-6C.-3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一点,且CE=2PE.
(1)求证:AE⊥平面PBC;
(2)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图△ABC的角平分线AD的延长线交它的外接圆于点E.
(Ⅰ)证明:△ABE∽△ADC;
(Ⅱ)若BC为△ABC外接圆的直径且AD•AE=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥A-BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分别在线段AB,AC上,AP=3PB,AQ=2QC,M是BD的中点.
(Ⅰ)证明:DQ∥平面CPM;
(Ⅱ)若二面角C-AB-D的大小为$\frac{π}{3}$,求∠BDC的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,则该几何体的体积为$12+\frac{2π}{3}$,表面积为38+π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是$\frac{5\sqrt{77}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,且(Sn-1)2=anSn(n∈N*).
(1)求出S1,S2,S3的值,并求出Sn及数列{an}的通项公式;
(2)设bn=(-1)n+1•(an+an+1)(n∈N*),求数列{bn}的前n项和Tn
(3)设cn=(n+1)•an(n∈N*),在数列{cn}中取出m(m∈N*且m≥3)项,按照原来的顺序排列成一列,构成等比数列{dn},若对任意的数列{dn},均有d1+d2+…+dn≤M,试求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个四面体的三视图如图,则此四面体的体积是(  )
A.$\frac{{15\sqrt{39}}}{2}$B.$\frac{{5\sqrt{39}}}{2}$C.$5\sqrt{39}$D.$5\sqrt{13}$

查看答案和解析>>

同步练习册答案