分析 (1)推导出AB⊥BD,从而AB⊥面BCD,由此能证明AB⊥CD.
(2)以B为原点,在平面BCD中过B作BD的垂线为x轴,BD为y轴,BA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BM-C的余弦值.
解答
证明:(1)∵AB=BD,∠A=45°,∴AB⊥BD
又∵平面ABD⊥平面BCD,且BD是平面ABD与平面BCD的交线,
∴AB⊥面BCD,
∵CD?平面BCD,∴AB⊥CD.
解:(2)以B为原点,在平面BCD中过B作BD的垂线为x轴,
BD为y轴,BA为z轴,建立空间直角坐标系,
则B(0,0,0),C(1,1,0),
D(0,1,0),A(0,0,1),M(0,$\frac{1}{2},\frac{1}{2}$),
$\overrightarrow{BC}=(1,1,0),\overrightarrow{BM}=(0,\frac{1}{2},\frac{1}{2})$,
面ABM的法向量为$\overrightarrow{n}$=(1,0,0),
设平面BMC的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=x+y=0}\\{\overrightarrow{m}•\overrightarrow{BM}=\frac{1}{2}y+\frac{1}{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-1,1),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
观察知二面角A-BM-C为钝角,
故二面角A-BM-C的余弦值为-$\frac{\sqrt{3}}{3}$.
点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题上,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | -6 | C. | -3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{15\sqrt{39}}}{2}$ | B. | $\frac{{5\sqrt{39}}}{2}$ | C. | $5\sqrt{39}$ | D. | $5\sqrt{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com