精英家教网 > 高中数学 > 题目详情
14.某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是$\frac{5\sqrt{77}}{8}$.

分析 由已知中的三视图,可知该几何体是一个四棱锥,求出底面面积,代入棱锥体积公式,可得答案.

解答 解:由已知中的三视图,可知该几何体是一个放倒的四棱锥,如,当xy取得最大值时,
由x2+y2=25≥2xy,
当且仅当x=y时xy最大,此时x=y=$\frac{5\sqrt{2}}{2}$,
所以棱锥的体积V=$\frac{1}{3}×\frac{1}{2}×\frac{3}{2}×\frac{5\sqrt{2}}{2}×\sqrt{\frac{25}{2}-7}×\sqrt{7}$=$\frac{5\sqrt{77}}{8}$;
故答案为:$\frac{5\sqrt{77}}{8}$.

点评 本题考查的知识点是由三视图求体积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点与抛物线y2=16x的焦点重合,且双曲线的离心率等于2,则该双曲线的渐近线方程为(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\sqrt{2}x$D.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱柱ABC-A1B1C1中,正方形AA1B1B的边长是整数,点H是其中心,C1H⊥平面AA1B1B,且C1H=$\sqrt{6}$,三棱柱ABC-A1B1C1的侧面积为4($\sqrt{7}$+1).
(Ⅰ)求AA1
(Ⅱ)求二面角A-BC-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:
(1)求证:AB⊥CD;
(2)若M为AD的中点,求二面角A-BM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是一个几何体的三视图,正视图是边长为2的正三角形,俯视图是等腰直角三角形,该几何体的表面积为$4+\sqrt{3}+\sqrt{7}$,体积为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知球的直径SC=4,A,B是该球面上的两点,∠AOB=90°,O为球心,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方体ABCD-A1B1C1D1的棱长a=2,P为该正方体的内切球的表面上的动点,且始终有AP⊥A1C,则动点P的轨迹的长度为(  )
A.$\frac{{\sqrt{3}π}}{3}$B.$\frac{{\sqrt{6}π}}{3}$C.$\frac{{2\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{6}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为(  )
A.1000$\sqrt{2}$πB.125$\sqrt{2}$πC.$\frac{1000\sqrt{2}π}{3}$D.$\frac{125\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个几何体的三视图如图所示(单位:cm),则该几何体的体积是6cm3,该几何体的表面积是$16+2\sqrt{5}$cm2

查看答案和解析>>

同步练习册答案