分析 根据几何体的三视图得该几何体是一个底面为直角梯形的四棱柱,由三视图求出几何元素的长度,由梯形的面积公式、柱体的体积公式求出该几何体的体积,由四棱柱的各个面的长度求出几何体的表面积.
解答 解:根据几何体的三视图得:该几何体是一个底面为直角梯形的四棱柱,
其底面是正视图中的直角梯形,上底为1cm,下底为2cm,高为2cm,
由侧视图知四棱柱的高为2cm,
所以该几何体的体积V=$\frac{1}{2}×(1+2)×2×2$=6(cm3),
由正视图可知直角梯形斜腰是$\sqrt{{1}^{2}+{2}^{2}}=\sqrt{5}$,
则该几何体的表面积S表面积=2×$\frac{1}{2}×(1+2)×2$+$1×2+2×2×2+\sqrt{5}×2$
=$16+2\sqrt{5}$(cm2),
故答案为:6;$16+2\sqrt{5}$.
点评 本题考查三视图求几何体的体积以及表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.
科目:高中数学 来源: 题型:解答题
| 年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 3 | 10 | 12 | 7 | 2 | 1 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 赞成 | |||
| 不赞成 | |||
| 合计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{15\sqrt{39}}}{2}$ | B. | $\frac{{5\sqrt{39}}}{2}$ | C. | $5\sqrt{39}$ | D. | $5\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4cm3 | B. | 8cm3 | C. | $\frac{16}{3}$cm3 | D. | $\frac{32}{3}$cm3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l=2r | B. | l=3r | C. | h=$\frac{{\sqrt{5}r}}{2}$ | D. | h=$\frac{{\sqrt{3}r}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | π | C. | $\frac{5π}{4}$ | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com