精英家教网 > 高中数学 > 题目详情
13.不等式lg(x2+100)≥2a+siny对一切非零实数x,y均成立,则实数a的取值范围为(-∞,0].

分析 问题转化为2a≤lg(x2+100)-siny,令z=lg(x2+100)-siny,根据对数函数和三角函数的性质求出z的最小值,从而求出a的范围即可.

解答 解:不等式lg(x2+100)≥2a+siny对一切非零实数x,y均成立,
∴2a≤lg(x2+100)-siny,
令z=lg(x2+100)-siny,则z≥lg100-1=1,
∴2a≤1,解得:a≤0,
则实数a的取值范围为(-∞,0].

点评 本题考查了函数恒成立问题,考查对数函数和三角函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为(  )
A.1000$\sqrt{2}$πB.125$\sqrt{2}$πC.$\frac{1000\sqrt{2}π}{3}$D.$\frac{125\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个几何体的三视图如图所示(单位:cm),则该几何体的体积是6cm3,该几何体的表面积是$16+2\sqrt{5}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的最值:
(1)f(x)=sin2x-x(-$\frac{π}{2}$≤x≤$\frac{π}{2}$);
(2)f(x)=x+$\sqrt{1-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{|x+1|+|x-1|-m}$的定义域为R.
(1)求实数m的取值范围;
(2)若m的最大值为n,当正数a,b满足$\frac{2}{3a+b}$+$\frac{1}{a+2b}$=n时,求7a+4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f′(x)是定义在R上的函数f(x)的导函数,f(0)=1,且f′(x)-2f(x)=0,则f(ln(x2-x))<4的解集为(-1,0)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知 Sn是数列{an}的前n项和,且Sn=2an+n-4.
(1)求a1的值;
(2)若bn=an-1,试证明数列{bn}为等比数列;
(3)求数列{an}的通项公式,并证明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.关天x的方程x2+4x-a=0在区间[-3,0]上有两个相异的实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2+a)•ex在(0,f(0))处的切线与直线y=-8x平行.
(Ⅰ)求a的值.
(Ⅱ)求f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案