| A. | $\frac{{\sqrt{3}π}}{3}$ | B. | $\frac{{\sqrt{6}π}}{3}$ | C. | $\frac{{2\sqrt{3}π}}{3}$ | D. | $\frac{{2\sqrt{6}π}}{3}$ |
分析 注意到P为该正方体的内切球的表面上的动点,且始终有AP⊥A1C,点P在过点A且于A1C垂直的平面与球的交线上,求出截面圆的半径,从而求周长.
解答 解:∵P为该正方体的内切球的表面上的动点,且始终有AP⊥A1C,
∴点P在过点A且于A1C垂直的平面与球的交线上,
设截面圆的圆心为O′,
∵正方体ABCD-A1B1C1D1的棱长a=2,
∴A1C=$\sqrt{3}$a,
由射影定理可得4=A1O′•2$\sqrt{3}$,
∴A1O′=$\frac{2}{\sqrt{3}}$
又∵内切球的半径为1,A1O=$\sqrt{3}$,
∴O′P=$\sqrt{1-\frac{1}{3}}$=$\sqrt{\frac{2}{3}}$,
∴点P的轨迹的周长为2π•$\sqrt{\frac{2}{3}}$=$\frac{2\sqrt{6}π}{3}$,
故选:D.
点评 本题考查了学生的空间想象力,考查学生的计算能力,确定截面的形状是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$ | B. | $\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$ | ||
| C. | $\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$ | D. | $\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 工作 效益 机器 | 一 | 二 | 三 | 四 | 五 |
| 甲 | 15 | 17 | 14 | 17 | 15 |
| 乙 | 22 | 23 | 21 | 20 | 20 |
| 丙 | 9 | 13 | 14 | 12 | 10 |
| 丁 | 7 | 9 | 11 | 9 | 11 |
| 戊 | 13 | 15 | 14 | 15 | 11 |
| A. | 甲只能承担第四项工作 | B. | 乙不能承担第二项工作 | ||
| C. | 丙可以不承担第三项工作 | D. | 获得的效益值总和为78 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 3 | 10 | 12 | 7 | 2 | 1 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 赞成 | |||
| 不赞成 | |||
| 合计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | π | C. | $\frac{5π}{4}$ | D. | $\frac{3π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com