精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的奇函数.

(1)当时, ,若当时, 恒成立,求的最小值;

(2)若的图像关于对称,且时, ,求当时, 的解析式;

(3)当时, .若对任意的,不等式恒成立,求实数的取值范围.

【答案】(1) 的最小值为;(2) ;(3) .

【解析】试题(1)取最小值时,m,n为函数在上最大值与最小值,先求函数在上最值,再根据奇函数性质得在上最大值与最小值,(2)先根据函数两个对称性(一个关于原点对称,一个关于对称)推导出函数周期,根据周期性只需求出解析式,根据关于对称,只需求出上解析式,根据奇函数性质根据解析式可得上解析式,(3)先根据函数解析式得到,转化不等式为,再根据函数单调性得,最后根据不等式恒成立,利用变量分离法求实数的取值范围.

试题解析:(1),当时, .

,因为函数是奇函数,所以当时,

.

所以的最小值为.

(2)由为奇函数,得;又的图像关于对称,得;∴

,当时,

(3)易知

;综上,对任

对任意的恒成立,又上递增,

,即对任意的恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,OACBD的交点,EAD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1

(2)设MOD的中点,证明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体中,分别是的中点,则异面直线所成角的正弦值是( )

A. B. C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD,底面ABCD为菱形,且∠DAB=60°,△PAB是边长为a的正三角形,且平面PAB⊥平面ABCD,已知点M是PD的中点.

(1)证明:PB∥平面AMC;

(2)求直线BD与平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1)函数是否过定点?若是求出该定点,若不是,说明理由.

2)将函数的图象向下平移个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;

3)在(2)的基础上,若函数过点,且设函数的定义域为,若在其定义域内,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.

(1)求出y关于x的函数解析式及x的取值范围;

(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后掷一颗质地均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6)两次,落在水平桌面上后,记正面朝上的点数分别为,记事件为“为偶数”,事件为“中有偶数且”,则概率( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为且抛物线的焦点恰好是椭圆的一个焦点.

(Ⅰ)求椭圆的方程

(Ⅱ)过点作直线与椭圆交于两点满足为坐标原点),求四边形面积的最大值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

同步练习册答案