精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=\frac{3-a}{{{a^x}+1}}+asinx$,那么下列命题正确的是(  )
A.若a=0,则y=f(x)与y=3是同一函数
B.若0<a≤1,则$f(-\frac{π}{2})<f(2-{log_3}2)<f[{(\frac{1}{3})^{{{log}_3}\frac{2}{3}}}]<f({log_3}5)<f(\frac{π}{2})$
C.若a=2,则对任意使得f(m)=0的实数m,都有f(-m)=1
D.若a>3,则f(cos2)<f(cos3)

分析 A,若a=0,则y=f(x)的定义域为{x|x≠0},y=3定义域为R,不是同一函数;
B,若0<a≤1时,可得函数f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上为增函数,即可判断;
C,a=2时,f(x)=$\frac{1}{{2}^{x}+1}+asinx$,f(x)+f(-x)=$\frac{1}{{2}^{x}+1}+asinx+\frac{1}{{2}^{-x}+1}+asin(-x)$=$\frac{1}{{2}^{x}+1}+\frac{1}{{z}^{-x}+1}=1$,即可判定;
D,当a>3时,f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上为增函数,且cos2>cos3,即可判定.

解答 解:对于A,若a=0,则y=f(x)的定义域为{x|x≠0},y=3定义域为R,不是同一函数,故错;
对于B,若0<a≤1时,可得函数f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上为增函数,∵$(\frac{1}{3})^{lo{{g}_{3}}^{\frac{2}{3}}}$=$\frac{3}{2}=lo{g}_{3}\sqrt{27}>lo{g}_{3}5$,故错;
对于C,a=2时,f(x)=$\frac{1}{{2}^{x}+1}+asinx$,f(x)+f(-x)=$\frac{1}{{2}^{x}+1}+asinx+\frac{1}{{2}^{-x}+1}+asin(-x)$=$\frac{1}{{2}^{x}+1}+\frac{1}{{z}^{-x}+1}=1$,∴则对任意使得f(m)=0的实数m,都有f(-m)=1,正确;
对于D,当a>3时,f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上为增函数,且cos2>cos3,则f(cos2)>f(cos3),故错.
故选:C

点评 本题考查了命题真假的判定,涉及到函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知四棱锥P-ABCD中,底面四边形ABCD为等腰梯形,且AB∥CD,AB=$\frac{1}{2}$CD,PA=PB=AD,PA+AD=CD=4$\sqrt{3}$,若平面PAB⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为52π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)求二面角A-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且$PB=\sqrt{10}$.
(1)求证:BD⊥平面POA;
(2)求二面角B-AP-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin(-$\frac{17π}{4}$)-cos(-$\frac{17π}{4}$)的值是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.巴西世界杯足球赛正在如火如荼进行.某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:
男生女生合计
收看10
不收看8
合计30
已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是$\frac{8}{15}$.
(I)请将上面的列联表补充完整,并据此资料分析在犯错误概率不超过0.01的前提下“通过电视收看世界杯”与性别是否有关?
(II)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”的人数为X,求X的分布列和均值.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(c+a)(b+d)}$,n=a+b+c+d)
P(K2>k0  0.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若点(0,1)到抛物线x2=ay准线的距离为2,则a=-12或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(sinx+cosx)2+2cos2x
(1)求函数f(x)的最小正周期和单调减区间;
(2)求使f(x)≥3成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用数字0、2、3、4、6按下列要求组数、计算:
(1)能组成多少个没有重复数字的三位数?
(2)可以组成多少个可以被3整除的没有重复数字的三位数?
(3)求2×3×4×6即144的所有正约数的和.(注:每小题结果都写成数据形式)

查看答案和解析>>

同步练习册答案