精英家教网 > 高中数学 > 题目详情
2.已知四棱锥P-ABCD中,底面四边形ABCD为等腰梯形,且AB∥CD,AB=$\frac{1}{2}$CD,PA=PB=AD,PA+AD=CD=4$\sqrt{3}$,若平面PAB⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为52π.

分析 作出图形,确定球心的位置,利用勾股定理建立方程,即可得出结论.

解答 解:由题意,PA=AD=2$\sqrt{3}$,PF=FG=3,球心O在平面ABCD中的射影为CD的中点,如图所示,
设OG=d,则$9+(3-d)^{2}={d}^{2}+(2\sqrt{3})^{2}$,
∴d=1,$r=\sqrt{13}$,
∴四棱锥P-ABCD外接球的表面积为4π•13=52π,
故答案为52π.

点评 本题考查四棱锥P-ABCD外接球的表面积,考查学生的计算能力,确定球心位置,求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知抛物线关于x轴对称,顶点在坐标原点,点P(1,2),A,B均在抛物线上,
(1)求该抛物线的标准方程;
(2)若线段AB的中点为(1,-1),求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-a|-$\frac{1}{2}$x,(a>0).
(Ⅰ)若a=3,解关于x的不等式f(x)<0;
(Ⅱ)若对于任意的实数x,不等式f(x)-f(x+a)<a2+$\frac{a}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知p:-x2+7x+8≥0,q:x2-2x+1-4m2≤0.若“¬p”是“¬q”的充分不必要条件,则实数m的取值范围为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)给出函数${f_1}(x)=lg\frac{x}{10},\;\;{f_2}(x)=lg10x,\;\;h(x)=lgx$,h(x)是否为f1(x),f2(x)的生成函数?并说明理由;
(2)设${f_1}(x)={log_2}x,\;\;{f_2}(x)={log_{\frac{1}{2}}}x,\;\;a=2,\;\;b=1$,生成函数h(x).若不等式3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,求实数t的取值范围;
(3)设${f_1}(x)=x\;\;(x>0),\;\;\;{f_2}(x)=\frac{1}{x}\;\;\;(x>0)$,取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1.试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=3${\;}^{-{x}^{2}+2x+3}$的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m,众数为n,平均值为$\overline{x}$,则(  )
A.m=n=$\overline{x}$B.m=n<$\overline{x}$C.m<n<$\overline{x}$D.n<m<$\overline{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知m,n是两条不同直线α,β是两个不同平面,则下列命题正确的是(  )
A.若α,β垂直于同一平面,则α与β平行
B.若m,n平行于同一平面,则m与n平行
C.若m,n不平行,则m与n不可能垂直于同一平面
D.若α,β不平行,则在α内不存在与β平行的直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\frac{3-a}{{{a^x}+1}}+asinx$,那么下列命题正确的是(  )
A.若a=0,则y=f(x)与y=3是同一函数
B.若0<a≤1,则$f(-\frac{π}{2})<f(2-{log_3}2)<f[{(\frac{1}{3})^{{{log}_3}\frac{2}{3}}}]<f({log_3}5)<f(\frac{π}{2})$
C.若a=2,则对任意使得f(m)=0的实数m,都有f(-m)=1
D.若a>3,则f(cos2)<f(cos3)

查看答案和解析>>

同步练习册答案