精英家教网 > 高中数学 > 题目详情
11.已知m,n是两条不同直线α,β是两个不同平面,则下列命题正确的是(  )
A.若α,β垂直于同一平面,则α与β平行
B.若m,n平行于同一平面,则m与n平行
C.若m,n不平行,则m与n不可能垂直于同一平面
D.若α,β不平行,则在α内不存在与β平行的直线

分析 对4个选项分别进行判断,即可得出结论.

解答 解:对于A,若α,β垂直于同一平面,则α与β平行或相交,不正确;
对于B,若m,n平行于同一平面,则m与n平行、相交或异面,不正确;
对于C,根据垂直与同一平面的两条直线平行,可知C正确;
对于D,若α,β不平行,则在α内存在与β平行的直线,与交线平行即可,不正确,
故选:C.

点评 本题考查空间的线面位置关系,考查空间想象能力和逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且$∠{F_1}P{F_2}=\frac{π}{3}$,则椭圆和双曲线的离心率乘积的最小值为(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知四棱锥P-ABCD中,底面四边形ABCD为等腰梯形,且AB∥CD,AB=$\frac{1}{2}$CD,PA=PB=AD,PA+AD=CD=4$\sqrt{3}$,若平面PAB⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为52π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足|AP|=|PM|,NP⊥MA,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G,H(点G在F,H之间),且满足$\overrightarrow{FG}=λ\overrightarrow{FH}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知g(x)=sin2x,将g(x)的图象向左平移$\frac{π}{8}$个单位长度,再将图象上各点的横坐标缩短到原来的$\frac{1}{4}$,得到函数f(x)的图象,则(  )
A.$f(x)=sin(8x-\frac{π}{4})$B.$f(x)=sin(8x+\frac{π}{4})$C.$f(x)=sin(\frac{x}{2}-\frac{π}{4})$D.$f(x)=sin(\frac{x}{2}+\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p:x2-4x-5>0,q:x2-2x+1-λ2>0,若p是q的充分不必要条件,则正实数λ的取值范围是(  )
A.(0,1]B.(0,2)C.$({0,\frac{3}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)求二面角A-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且$PB=\sqrt{10}$.
(1)求证:BD⊥平面POA;
(2)求二面角B-AP-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(sinx+cosx)2+2cos2x
(1)求函数f(x)的最小正周期和单调减区间;
(2)求使f(x)≥3成立的x的取值集合.

查看答案和解析>>

同步练习册答案