精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a

(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,当
CD
AB
为何值时,能使DM⊥MC?请给出证明.
分析:(Ⅰ)先由∠A=90°?AB⊥AD再利用SD⊥平面ABCD?SD⊥AB?AB⊥平面SAD?结论成立.
(Ⅱ)由题中条件可推得DM⊥SB.当
CD
AB
=2
时,又可利用其推得BC⊥平面SBD?DM⊥BC?DM⊥平面SBC?DM⊥MC.
解答:精英家教网解:(Ⅰ)证明:∵∠A=90°,
∴AB⊥AD.
又SD⊥平面ABCD,AB?平面ABCD,
∴SD⊥AB.(2分)
∴AB⊥平面SAD.(4分)
又AB?平面SAB,
∴平面SAB⊥平面SAD(7分)
(Ⅱ)当
CD
AB
=2
时,能使DM⊥MC.(9分)
连接BD,∵∠A=90°,AB=AD=a
BD=
2
a∴SD=BD,∠BDA=45°

又M为SB中点,
∴DM⊥SB①(8分)
设CD的中点为P,连接BP,则DP∥AB,且DP=AB
∴BP∥AD,
∴BP⊥CD∴BD=BC
又∠BDC=90°-∠BDA=45°
∴∠CBD=90°即BC⊥BD
又BC⊥SD∴BC⊥平面SBD
∴DM⊥BC②(12分)
由①②知DM⊥平面SBC
∴DM⊥MC
即当
CD
AB
=2
时,能使DM⊥MC.(14分)
点评:本题考查平面和平面垂直的判定和性质.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,且DM⊥MC,试求出四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.点E、F分别是PC、BD的中点,现将△PDC沿CD折起,使PD⊥平面ABCD,
(1)求证:EF∥平面PAD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在BCD内运动(含边界),设
AP
AD
AB
,则α+β的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案