【题目】选修4-5:不等式选讲
设函数
.
(1)证明:
;
(2)若不等式
的解集是非空集,求
的范围.
【答案】(1)见解析;(2)
.
【解析】试题分析:(1)直接计算
,由绝对值不等式的性质及基本不等式证之即可;
(2)
,分区间讨论去绝对值符号分别解不等式即可.
试题解析: (1)证明:函数f(x)=|x﹣a|,a<0,
则f(x)+f(﹣
)=|x﹣a|+|﹣
﹣a|=|x﹣a|+|
+a|≥|(x﹣a)+(
+a)|
=|x+
|=|x|+
≥2
=2.
(2)f(x)+f(2x)=|x﹣a|+|2x﹣a|,a<0.
当x≤a时,f(x)=a﹣x+a﹣2x=2a﹣3x,则f(x)≥﹣a;
当a<x<
时,f(x)=x﹣a+a﹣2x=﹣x,则﹣
<f(x)<﹣a;
当x
时,f(x)=x﹣a+2x﹣a=3x﹣2a,则f(x)≥﹣
.则f(x)的值域为[﹣
,+∞).
不等式f(x)+f(2x)<
的解集非空,即为
>﹣
,解得,a>﹣1,由于a<0,
则a的取值范围是
.
科目:高中数学 来源: 题型:
【题目】某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:
强度(J) | 1.6×1019 | 3.2×1019 | 4.5×1019 | 6.4×1019 |
震级(里氏) | 5.0 | 5.2 | 5.3 | 5.4 |
注:地震强度是指地震时释放的能量.
地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现从中随机抽取100人的数学与地理的水平测试成绩如下表:
![]()
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有
.
(Ⅰ)若在该样本中,数学成绩优秀率是30%,求
的值;
(Ⅱ)已知
,求数学成绩为优秀的人数比及格的人数少的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设△ABC的顶点分别为
,圆M是△ABC的外接圆,直线
的方程是
,![]()
(1)求圆M的方程;
(2)证明:直线
与圆M相交;
(3)若直线
被圆M截得的弦长为3,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=
,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.
![]()
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′与平面A′BD所成的角为30°.
(4)四面体A′-BCD的体积为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过原点的直线与椭圆
交于
两点,点
为椭圆上不同于
的一点,直线
的斜率均存在,且直线
的斜率之积为
.
(1)求椭圆
的离心率;
(2)设
分别为椭圆的左、右焦点,斜率为
的直线
经过椭圆的右焦点,且与椭圆交于
两点.若点
在以
为直径的圆内部,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
对一切实数
都有
成立,且
.
(1)求
的值;
(2)求
的解析式;
(3)已知
,设
:当
时,不等式
恒成立;Q:当
时,
是单调函数。如果满足
成立的
的集合记为
,满足Q成立的
的集合记为
,求A∩(CRB)(
为全集).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com