精英家教网 > 高中数学 > 题目详情
18.已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数,若p或q为真命题,则实数a的取值范围是(  )
A.(-∞,2]B.(1,2)C.(1,+∞)D.(2,+∞)

分析 根据函数的性质先求出命题p,q成立时的等价条件,根据p或q为真命题,建立不等式关系进行求解即可.

解答 解:当△=0时,a=-$\frac{1}{8}$,此时有一个零点x=-2,不在(0,1)上,故不成立.
∵函数f(x)=2ax2-x-1在(0,1)内恰有一个零点,∴f(0)f(1)<0,
即-1×(2a-2)<0,解得,a>1,即p:a>1,
命题q:函数y=x2-a在(0,+∞)上是减函数,∴2-a<0,得a>2,即q:a>2,
若p或q为真命题,
则(1,+∞)∪(2,+∞)=(1,+∞),
故选:C

点评 本题主要考查复合命题真假关系的应用,根据条件求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数f(x)=lnx+$\frac{1}{2}$x2+ax存在与直线3x-y=0平行的切线,则实数a的取值范围是(  )
A.(0,+∞)B.(-∞,2)C.(2,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x+y+$\sqrt{3}$-1=0截圆x2+y2-2x-2y-2=0所得的劣弧所对的圆心角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}是公差不为0的等差数列,Sn为其前n项的和,满足:a22+a32=a42+a52,S7=7.
(1)求数列{an}的通项公式及前n项的和Sn
(2)设数列{bn}满足bn=2${\;}^{{a}_{n}}$,其前n项的和为Tn,当n为何值时,有Tn>512.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等比数列{an}中,已知a2=2,a8=32,则a5的值为±8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x∈R|ax2-2x-1=0},B={x|y=$\sqrt{x}$},A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.极坐标系中,已知曲线C1:ρ=2cosθ,曲线C2:ρ=2cos($θ-\frac{π}{3}$).
(1)求C1与C2交点的直角坐标.
(2)若曲线C3:θ=$\frac{2π}{3}$(ρ∈R,ρ≠0)分别与C1,C2相交于A,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,a3=6,S3=12.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求证:S1,S3,S8成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{f(x-1),x>0}\end{array}\right.$,若函数g(x)=f(x)-x-a只有一个零点,则实数a的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

同步练习册答案