如图,在三棱锥
中,点
分别是棱
的中点.![]()
(1)求证:
//平面
;
(2)若平面
平面
,
,求证:
.
(1)详见解析;(2)详见解析.
解析试题分析:(1)这是一个证明直线和平面平行的问题,考虑直线与平面平行的判定定理,可找面外线平行于面内线,本题容易找到
,结论自然得证;(2)因为条件中有平面与平面垂直,故可考虑平面与平面垂直的判定定理,在一平面内作垂直于交线的直线平行于另一平面,再得到线线垂直,再证线面垂直,再得线线垂直,问题不难解决.
试题解析:(1)在
中,
、
分别是
、
的中点,所以
,
又
平面
,
平面
,所以
平面
. 6分
(2)在平面
内过点
作
,垂足为
.因为平面
平面
,平面
平面
,
平面
,所以
平面
, 8分
又
平面
,所以
, 10分
又
,
,
平面
,
平面
,
所以
平面
, 12分
又
平面
,所以
. 14分![]()
考点:直线与平面平行的判定、直线与平面垂直的判定,平面与平面垂直的性质.
科目:高中数学 来源: 题型:解答题
如图,平面
平面
,
是等腰直角三角形,
,四边形
是直角梯形,
∥AE,![]()
![]()
,
,
分别为
的中点.![]()
(1)求异面直线
与
所成角的大小;
(2)求直线
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,已知
的直径
,点
、
为
上两点,且
,
,
为弧
的中点.将
沿直径
折起,使两个半圆所在平面互相垂直(如图2).![]()
(Ⅰ)求证:
;
(Ⅱ)在弧
上是否存在点
,使得
平面
?若存在,试指出点
的位置;若不存在,请说明理由;
(Ⅲ)求二面角
的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,矩形
中,
,
,
、
分别为
、
边上的点,且
,
,将
沿
折起至
位置(如图2所示),连结
、
、
,其中
.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.![]()
(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知三棱柱
的侧棱长和底面边长均为2,
在底面ABC内的射影O为底面△ABC的中心,如图所示:![]()
(1)联结
,求异面直线
与
所成角的大小;
(2)联结
、
,求三棱锥C1-BCA1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
.![]()
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥S-ABCD中,底面ABCD是矩形,SA
底面ABCD,SA=AD,点M是SD的中点,AN
SC且交SC于点N.![]()
(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:平面SAC
平面AMN.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com