分析 (1)依题意知这四人随意游览四个景区的所有可能种数是n=44=256种,若四人游览同一景点,由只有4种可能,由此能求出这四人恰有两人完成原计划的概率.
(2)①依题意知这四人随意游览四个景点的所有可能种数是n=256种,若四人中只有两人完成原计划,由不同可能种数是m2=6×9=54种,由此能求出每人只游览一个景点,每个景点只能一人游览.
②若每个景点只能一人游览,则所有可能种数是${n}_{1}={A}_{4}^{4}$=24种,至少有一人完成原计划的对立事件是这四人没有任何一人完成原计划,由此能求出这四人至少有一人完成原计划的概率.
解答 解:(1)依题意知这四人随意游览四个景区的所有可能种数是拿n=44=256种,
若四人游览同一景点,由只有4种可能,
∴四人游览同一景点的概率p1=$\frac{4}{256}=\frac{1}{64}$.
(2)①依题意知这四人随意游览四个景点的所有可能种数是n=256种,
若四人中只有两人完成原计划,由不同可能种数是m2=6×9=54种,
∴这四人恰有两人完成原计划的概率p2=$\frac{{m}_{2}}{n}$=$\frac{54}{256}=\frac{27}{128}$.
②若每个景点只能一人游览,则所有可能种数是${n}_{1}={A}_{4}^{4}$=24种,
至少有一人完成原计划的对立事件是这四人没有任何一人完成原计划,
而没有任何一人完成原计划的不同可能为9种,
∴这四人至少有一人完成原计划的概率p3=1-$\frac{9}{24}=\frac{5}{8}$.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3≤k≤2 | B. | k≥2或k≤-3 | C. | -2≤k≤3 | D. | k≥3或k≤-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com