精英家教网 > 高中数学 > 题目详情

中,角的对边分别为向量,且
(1)求的值;
(2)若,,求角的大小及向量方向上的投影.

(1);(2),向量方向上的投影

解析试题分析:(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量方向上的投影.
试题解析:(1)由,得,      1分
,                             2分
.
 .                       3分
 .                        4分
(2)由正弦定理,有,                    5分
.                   6分
,                         7分
.                              8分
由余弦定理,有,             9分
(舍去).                       10分
故向量方向上的投影为            11分
.                            12分
考点:1、向量数量积、投影;2、三角恒等变换;3、解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义在区间上的函数的图象关于直线对称,当时函数图象如图所示

(Ⅰ)求函数的表达式;
(Ⅱ)求方程的解;
(Ⅲ)是否存在常数的值,使得上恒成立;若存在,求出 的取值范围;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.
(1)求函数的解析式及其对称轴;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且当时,的最小值为2.
(1)求的值,并求的单调增区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;
(2)设.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的最小正周期和单调递增区间;
(Ⅱ)求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期; (2)求的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为ΔABC三个内角A,B,C的对边长,.
(Ⅰ)求角A的大小;
(II)若a=,ΔABC的面积为1,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)用五点法画出它在一个周期内的闭区间上的图象;

(2)求函数的单调增区间;
(3)若,求的最大值和最小值.

查看答案和解析>>

同步练习册答案