精英家教网 > 高中数学 > 题目详情

已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.
(1)求函数的解析式及其对称轴;
(2)若,求的值.

(1);(2).

解析试题分析:本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.
试题解析:(1)
由题意知:的周期为,由,知              2分
最大值为2,故,又           4分
                         5分
,解得的对称轴为            7分
(2)由,即,      8分
        10分
               12分
考点:1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)化简
(2)若是第三象限角,且 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ΔABC中,.
(1)求证:;
(2)若a、b、c分别是角A、B、C的对边,,求c和ΔABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角的对边分别为,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.
(1)若点的坐标为(-),求的值;
(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为,且是相邻的两对称轴方程.
(1)求函数上的值域;
(2)中,,角所对的边分别是,且 ,,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如图所示.

(1)试确定函数的解析式;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为向量,且
(1)求的值;
(2)若,,求角的大小及向量方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角的对边分别为,已知.
(Ⅰ)求
(Ⅱ)若,求的面积.

查看答案和解析>>

同步练习册答案