精英家教网 > 高中数学 > 题目详情

已知函数的部分图象如图所示.

(1)试确定函数的解析式;
(2)若,求的值.

(1);(2).

解析试题分析:(1)先根据图象的最值求出,然后根据图象信息求出最小正周期,利用周期公式求出的值,再根据顶点或对称中心点并结合的取值范围求出的值,最终确定的解析式;(2)先由求出的值,并确定角与角之间的关系,并将转化为的值,最后利用二倍角公式求出的值.
试题解析:(1)由图象知,
设函数的最小正周期为,则,所以
故函数
,所以
,即,所以,故,解得
所以
(2),即,所以

所以.
考点:1.三角函数的图象;2.二倍角公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)确定函数上的单调性并求在此区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期和最大值;
(2)若为锐角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.
(1)求函数的解析式及其对称轴;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数与函数图像关于轴对称.
(1)当时,求的值域及单调递减区间;
(2)若值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且当时,的最小值为2.
(1)求的值,并求的单调增区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;
(2)设.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期; (2)求的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.(1)求的最大值和最小正周期;(2) 若是第二象限的角,求.

查看答案和解析>>

同步练习册答案