已知函数,函数与函数图像关于轴对称.
(1)当时,求的值域及单调递减区间;
(2)若,求值.
(1)当时,的值域为,单调递减区间为;
(2).
解析试题分析:(1)先将函数的解析式进行化简,化简为,利用计算出的取值范围,再结合正弦曲线确定函数的值域,对于函数在区间上的单调区间的求解,先求出函数在上的单调递减区间,然后和定义域取交集即得到函数在区间上的单调递减区间;(2)利用等式计算得出的值,然后利用差角公式将角凑成的形式,结合两角差的正弦公式进行计算,但是在求解的时候计算时,利用同角三角函数的基本关系时需要考虑角的取值范围.
试题解析:(1)
2分
又与图像关于轴对称,得
当时,得,得即 4分
单调递减区间满足,得
取,得,又,单调递减区间为 7分
(2)由(1)知
得,由于 8分
而10分
13分
考点:1.诱导公式;2.同角三角函数的基本关系;3.两角差的正弦公式
科目:高中数学 来源: 题型:解答题
设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.
(1)若点的坐标为(-),求的值;
(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合,终边交单位圆于点,且.将角的终边按逆时针方向旋转,交单位圆于点.记.
(Ⅰ)若,求;
(Ⅱ)分别过作轴的垂线,垂足依次为.记△ 的面积为,△的面积为.若,求角的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com