精英家教网 > 高中数学 > 题目详情

已知向量
(1)设,写出函数的最小正周期;并求函数的单调区间;
(2)若,求的最大值.

(1)  ;(2).

解析试题分析:(1)根据平面向量数量积的运算求出,最小正周期即是,根据图像的平移变换的规律写出函数经过怎样的变化到已知函数的;(2)先根据已给的向量坐标化简,得到式子,根据三角函数在定区间上的取值判断值域所在的区间,即是的取值集合,找到最大值.
试题解析:(1)由已知得
所以函数的最小正周期为.                              3分
将函数的图像依次进行下列变换:把函数的图像向左平移,得到函数的图像;把函数的图像上各点纵坐标伸长到原来的倍(横坐标不变),得到函数的图像;                   6分
(2)
所以
因为,所以,则
所以,即的范围是.      11分
时,的最大值为.               12分
考点:1、三角函数的最小正周期;2、三角函数图像的平移变换;3、三角函数在定区间上的最值;4、求平面向量的模;5、三角函数的恒等变换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数的部分图像如图所示,

(Ⅰ)求出函数的解析式;
(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角所对的边分别为,且.
(Ⅰ)若,求角
(Ⅱ)设,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递减区间;(6分);
(2)在中,分别是角A、B、C的对边,若,求 面积的最大值.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的图象关于直线对称,其中
(1)求的解析式;
(2)将的图象向左平移个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的图象;若函数的图象与的图象有三个交点且交点的横坐标成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数与函数图像关于轴对称.
(1)当时,求的值域及单调递减区间;
(2)若值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为坐标原点,向量,点满足.
(Ⅰ)记函数,讨论函数的单调性,并求其值域;
(Ⅱ)若三点共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角中,.
(I) 求角的大小;
(II)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 (其中),函数,若直线是函数图象的一条对称轴.
(Ⅰ)试求的值;
(Ⅱ)若函数的图象是由的图象的各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到,求的单调递增区间.

查看答案和解析>>

同步练习册答案