精英家教网 > 高中数学 > 题目详情

的图象关于直线对称,其中
(1)求的解析式;
(2)将的图象向左平移个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的图象;若函数的图象与的图象有三个交点且交点的横坐标成等比数列,求的值.

(1);(2).

解析试题分析:(1)本题考查了三角函数的对称性,利用通解来求解;(2)由图象变换求得,再利用三交点的横坐标成等比数列求得,因此.此题将数列与三角函数知识联系在一起,在知识的交汇处命题.
试题解析:(1)的图象关于直线对称,
,解得,                2分

                            5分
(2)将的图象向左平移个单位后,提到
,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后,得到
                                9分
函数的图象与的图象有三个交点坐标分别为

则由已知结合图象的对称性,有,解得          11分
.                             12分
考点:1.三角函数解析式的求解;2.函数的对称性;3.三角函数图象的变换;4.等比中项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量a=(2cosx,2sinx),b=(cosx,cosx),设函数f(x)=a•b-,求:
(1)f(x)的最小正周期和单调递增区间;
(2)若, 且α∈(,π). 求α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数,周期为2.
(Ⅰ)求的解析式;
(Ⅱ)若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。
(Ⅰ)求角C的大小;
(Ⅱ)求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)设,写出函数的最小正周期;并求函数的单调区间;
(2)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 的图象过点(0, ),最小正周期为 ,且最小值为-1.
(1)求函数的解析式.
(2)若 ,的值域是 ,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;
(2)设.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量设函数.
的最小正周期与单调递增区间;
中,分别是角的对边,若的面积为,求的值.

查看答案和解析>>

同步练习册答案