精英家教网 > 高中数学 > 题目详情

已知函数的最大值是1,其图像经过点
(1)求的解析式;
(2)已知,且的值.

(1).(2).

解析试题分析:(1)函数的最大值即,从而得到
将点代入解析式并结合,可得
进一步得到.
(2)根据(1)所得,得到
应用三角函数同角公式得到,进一步应用两角差的余弦公式即得所求.
试题解析:(1)依题意得,,则
将点代入得,,而,所以,
.
(2)依题意得,,而
所以,

考点:三角函数的图象和性质,同角公式、两角和与差的三角函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 ().
(1)求函数的最小正周期;
(2)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,的对边分别为成等差数列.
(1)求B的值;
(2)求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别为角所对的边,向量,且垂直.
(Ⅰ)确定角的大小;
(Ⅱ)若的平分线于点,且,设,试确定关于的函数式,并求边长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的部分图像如图所示,

(Ⅰ)求出函数的解析式;
(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)确定函数上的单调性并求在此区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面直角坐标系上的三点为坐标原点,向量与向量共线.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数与函数图像关于轴对称.
(1)当时,求的值域及单调递减区间;
(2)若值.

查看答案和解析>>

同步练习册答案