分析 根据函数的奇偶性,求出a,b的值,从而求出函数f(x)的表达式,求出函数的导数,解关于导函数的表达式,得到函数的单调区间,从而求出函数的最大值和最小值即可.
解答 解:∵函数f(x)的图象关于原点成中心对称,则f(x)是奇函数,
所以,f(0)=b=0,且a+1=0,
解得a=-1,b=0,
于是f(x)=-x3+27x,f′(x)=-3x2+27=-3(x+3)(x-3),
∴当x∈(-3,3)时,f′(x)>0;当x∈(-4,-3)和(3,5)时,f′(x)<0.
又∵函数f(x)在[-4,5]上连续.
∴f(x)在(-3,3)上是单调递增函数,在(-4,-3)和(3,5)上是单调递减函数,
而f(-4)=-44,f(-3)=-54,f(3)=54,f(4)=44,
∴f(x)的最大值是54,f(x)的最小值是-54.
点评 本题考查了函数的奇偶性问题,考查函数的单调性以及函数的最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=sin\frac{x}{2}$ | B. | y=sin2x | C. | $y=cos\frac{x}{4}$ | D. | y=tan2x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com