已知椭圆:经过如下五个点中的三个点:,,,,.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.
(Ⅰ);(Ⅱ)
解析试题分析:(Ⅰ)因为和关于原点对称,由椭圆的对称性可知和在椭圆上。因为在椭圆上则和不在椭圆上。所以在椭圆上。解方程组可得的值。(Ⅱ)需讨论哪个角为直角只讨论和即可,因为点的位置没有固定,和的情况相同。如当时,设直线,联立方程消去消去得关于的一元二次方程,由韦达定理得根与系数的关系。根据,则直线垂直其斜率相乘等于,列式计算可得,则说明原点在的外部,符合条件,否则不符合条件舍掉。在求面积时若采用先求弦再求点到的距离最后求面积的方法计算过于繁琐,所以求的面积时可用分割法,计算较简单。
试题解析:解:(Ⅰ)由知,和不在椭圆上,即椭圆经过,,.
于是.
所以 椭圆的方程为:. 2分
(Ⅱ)①当时,设直线,由得
.设,则,
所以
.
于是,此时,所以 直线.
因为,故线段与轴相交于,即原点在线段的延长线上,即原点在的外部,符合题设. 6分
所以
.
当时取到最大值. 9分
②当时,不妨设
科目:高中数学 来源: 题型:解答题
已知椭圆的右焦点为F2(1,0),点 在椭圆上.
(1)求椭圆方程;
(2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:()过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线上,过作直线交椭圆于两点,且为线段中点,再过作直线.证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆上的点到其两焦点距离之和为,且过点.
(Ⅰ)求椭圆方程;
(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,,若,求△的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中是到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆于、两点,求证:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com