在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中是到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.
(1) ;(2)
解析试题分析:(1)求出是到直线的距离d和的表达式,由=2d建立等式,整理得在把代入中求出x的取值范围即可.
(2)由导数的几何意义求出直线m的斜率,求出直线m的参数方程,然后代入曲线C2方程中,消去y得到关于x的一元二次方程,由直线与椭圆相切,所以△==0,而又二者联立起来解出a2,b2,由a2>b2,求出参数t的取值范围,在根据椭圆离心率e的定义就可求出其范围.
试题解析:解:(1),
, 2分
由①得:
,
即 4分
将代入②得:,
解得:
所以曲线的方程为: 6分
(2)(解法一)由题意,直线与曲线相切,设切点为,
则直线的方程为,
即 7分
将代入椭圆 的方程,并整理得:
由题意,直线与椭圆相切于点,则
,
即 9分
又 即 联解得: 10分
由及得
故, 12分
得又故
所以椭圆离心率的取值范围是 14分
(2)(解法二)设直线与曲线
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于,两点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:经过如下五个点中的三个点:,,,,.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为且与双曲线:有共同焦点.
(1)求椭圆的方程;
(2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值;
(3)设椭圆的左、右顶点分别为,过椭圆上的一点作轴的垂线交轴于点,若点满足,,连结交于点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆()相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆经过点.
(1)求椭圆C的标准方程;
(2)线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中,点A、B的坐标分别为,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com