精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.

(1) ;(2)  

解析试题分析:(1)求出到直线的距离d和的表达式,由=2d建立等式,整理得在把代入中求出x的取值范围即可.
(2)由导数的几何意义求出直线m的斜率,求出直线m的参数方程,然后代入曲线C2方程中,消去y得到关于x的一元二次方程,由直线与椭圆相切,所以△==0,而又二者联立起来解出a2,b2,由a2>b2,求出参数t的取值范围,在根据椭圆离心率e的定义就可求出其范围.
试题解析:解:(1)
,                            2分
由①得:

                                    4分
代入②得:
解得:
所以曲线的方程为:                        6分
(2)(解法一)由题意,直线与曲线相切,设切点为
则直线的方程为
                               7分
代入椭圆 的方程,并整理得:

由题意,直线与椭圆相切于点,则

                               9分
 即 联解得:         10分

,                           12分

所以椭圆离心率的取值范围是                  14分
(2)(解法二)设直线与曲线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于两点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过如下五个点中的三个点:.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为且与双曲线有共同焦点.
(1)求椭圆的方程;
(2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值;
(3)设椭圆的左、右顶点分别为,过椭圆上的一点轴的垂线交轴于点,若点满足,连结于点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上, ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆经过点
(1)求椭圆C的标准方程;
(2)线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,点A、B的坐标分别为,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。

查看答案和解析>>

同步练习册答案