在平面直角坐标系中,已知点
及直线
,曲线
是满足下列两个条件的动点
的轨迹:①
其中
是
到直线
的距离;②![]()
(1) 求曲线
的方程;
(2) 若存在直线
与曲线
、椭圆
均相切于同一点,求椭圆
离心率
的取值范围.
(1)
;(2)
解析试题分析:(1)求出
是
到直线
的距离d和
的表达式,由
=2d建立等式,整理得
在把
代入
中求出x的取值范围即可.
(2)由导数的几何意义求出直线m的斜率,求出直线m的参数方程,然后代入曲线C2方程中,消去y得到关于x的一元二次方程,由直线
与椭圆
相切,所以△=![]()
=0,而又
二者联立起来解出a2,b2,由a2>b2,求出参数t的取值范围,在根据椭圆离心率e的定义就可求出其范围.
试题解析:解:(1)
,
, 2分
由①
得:
,
即
4分
将
代入②得:
,
解得: ![]()
所以曲线
的方程为:
6分
(2)(解法一)由题意,直线
与曲线
相切,设切点为
, ![]()
则直线
的方程为
,
即
7分
将
代入椭圆
的方程
,并整理得:![]()
由题意,直线
与椭圆
相切于点
,则
,
即
9分
又
即
联解得:
10分
由
及
得![]()
故
, 12分
得
又
故![]()
所以椭圆
离心率
的取值范围是
14分
(2)(解法二)设直线
与曲线![]()
![]()
科目:高中数学 来源: 题型:解答题
已知抛物线
的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为2,且
.
(1)求抛物线的方程;
(2)过点
作直线
交抛物线于
,
两点,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
经过如下五个点中的三个点:
,
,
,
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
为椭圆
的左顶点,
为椭圆
上不同于点
的两点,若原点在
的外部,且
为直角三角形,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
且与双曲线
:
有共同焦点.
(1)求椭圆
的方程;
(2)在椭圆
落在第一象限的图像上任取一点作
的切线
,求
与坐标轴围成的三角形的面积的最小值;
(3)设椭圆
的左、右顶点分别为
,过椭圆
上的一点
作
轴的垂线交
轴于点
,若
点满足
,
,连结
交
于点
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点
,直线AM、BM相交于点M,且这两条直线的斜率之积为
.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆
(
)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的左、右焦点分别为
,椭圆的离心率为
,且椭圆经过点
.
(1)求椭圆C的标准方程;
(2)线段
是椭圆过点
的弦,且
,求
内切圆面积最大时实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
中,点A、B的坐标分别为
,点C在x轴上方。
(1)若点C坐标为
,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为
的直线
交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com