精英家教网 > 高中数学 > 题目详情

已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆经过点
(1)求椭圆C的标准方程;
(2)线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.

(1);(2).

解析试题分析:本题主要考查直线、椭圆的标准方程及其性质,考查思维能力,运算能力.第一问,利用离心率和椭圆过定点求椭圆的标准方程;第二问,分两种情况:当直线轴垂直时,比较直观,可求得,而当直线不与轴垂直时,设出直线的方程,让它与椭圆联立,消去参数,得到两根之和、两根之积,代入到中,通过配方法求面积的最大值,利用内切圆半径列出的面积,解出的范围,得到,此时直线轴垂直,所以.
试题解析:(1),又
    4分
(2)显然直线不与轴重合
当直线轴垂直时,||=3,;      5分
当直线不与轴垂直时,设直线代入椭圆C的标准方程,
整理,得
                    7分


所以
由上,得
所以当直线轴垂直时最大,且最大面积为3        10分
内切圆半径,则
,此时直线轴垂直,内切圆面积最大
所以,           12分
考点:1.椭圆的标准方程;2.直线的标准方程;3.韦达定理;4.三角形面积公式;5.配方法求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.
(1)若点中点,求直线的方程;
(2)设抛物线的焦点为,当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为为椭圆上的四个点。
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求四边形的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且(O为坐标原点),求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点,
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且的两个交点A和B满足(其中0为原点),求k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求·的值;
(2)如果·=-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

同步练习册答案