抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.
(1)若点为中点,求直线的方程;
(2)设抛物线的焦点为,当时,求的面积.
(1)或;(2)4.
解析试题分析:(1)首先根据准线方程求得抛物线的标准方程,然后设直线直线l的方程,并与抛物线方程联立消去x得到关于y的二次方程,再利用韦达定理与中点坐标公式可求得m的值,进而得到直线l的方程;(2)根据条件中的垂直关系,利用A、B、F三点的坐标表示出向量与,然后利用向量垂直的条件可得的值,进而可求得的面积.
试题解析:(1)∵抛物线的准线方程为,∴
∴抛物线的方程为,
显然,直线与坐标轴不平行
∴设直线的方程为, ,
联立直线与抛物线的方程,得,
,解得或 .
∵点为中点,∴,即
∴解得 ,
,∴或
∴,
直线方程为或.
(2)焦点,
∵
∴,
.
考点:1、直线方程;2、抛物线方程;3、直线与抛物线的位置关系;4、平面向量垂直的充要条件的应用.
科目:高中数学 来源: 题型:解答题
已知直线过点且与抛物线交于A、B两点,以弦AB为直径的圆恒过坐标原点O.
(1)求抛物线的标准方程;
(2)设是直线上任意一点,求证:直线QA、QM、QB的斜率依次成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于,两点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆: 的离心率为 ,点 为其下焦点,点为坐标原点,过 的直线 :(其中)与椭圆 相交于两点,且满足:.
(1)试用 表示 ;
(2)求 的最大值;
(3)若 ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(Ⅰ)当点在圆上运动时,求点的轨迹方程;
(Ⅱ)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:经过如下五个点中的三个点:,,,,.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为且与双曲线:有共同焦点.
(1)求椭圆的方程;
(2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值;
(3)设椭圆的左、右顶点分别为,过椭圆上的一点作轴的垂线交轴于点,若点满足,,连结交于点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆经过点.
(1)求椭圆C的标准方程;
(2)线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com