精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为且与双曲线有共同焦点.
(1)求椭圆的方程;
(2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值;
(3)设椭圆的左、右顶点分别为,过椭圆上的一点轴的垂线交轴于点,若点满足,连结于点,求证:.

(1);(2)2;(3)证明详见解析.

解析试题分析:(1)有离心率,求得 (s),由公共焦点得 (t),解由(s)(t)组成的方程组即可.
(2)设直线的方程为:,代入椭圆方程中,消去y,得到关于x的一元二次方程,其判别式等于零,可得,在求出直线l与坐标轴的交点,写出围成的三角形的面积,再把代入,即可最的最小值.
(3),设,求出的坐标,由向量平行的充要条件可得,在求出直线AC的方程,整理得,然后求出P点坐标即可.
试题解析:(1)由可得:
①         2分
②联立①②解得:
椭圆的方程为:        3分
(2)与椭圆相切于第一象限内的一点,直线的斜率必存在且为负
设直线的方程为:
联立消去整理可得:
③,      4分
根据题意可得方程③只有一实根,
整理可得:④      6分
直线与两坐标轴的交点分别为      7分
与坐标轴围成的三角形的面积⑤,      8分
④代入⑤可得:(当且仅当时取等号)    9分
(3)由(1)得,设
可设
可得:    11分
直线的方程为:整理得:
上,令代入直线的方程可得:,    13分
即点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆过点,离心率为.
(1)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截得线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.
(1)若点中点,求直线的方程;
(2)设抛物线的焦点为,当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆上的点到其两焦点距离之和为,且过点
(Ⅰ)求椭圆方程;
(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,若,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为为椭圆上的四个点。
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求四边形的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点,
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且的两个交点A和B满足(其中0为原点),求k的取值范围。

查看答案和解析>>

同步练习册答案