设椭圆过点,离心率为.
(1)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截得线段的中点坐标.
科目:高中数学 来源: 题型:解答题
如图,椭圆=1(a>b>0)的上,下两个顶点为A,B,直线l:y=-2,点P是椭圆上异于点A,B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1,BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1).
(1)求k1·k2的值;
(2)求MN的最小值;
(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线过点且与抛物线交于A、B两点,以弦AB为直径的圆恒过坐标原点O.
(1)求抛物线的标准方程;
(2)设是直线上任意一点,求证:直线QA、QM、QB的斜率依次成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))
(1)证明:平面;
(2)求平面与平面的所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ,=λ,其中0<λ<1.
(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;
(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点,是动点,且的三边所在直线的斜率满足.
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线与交于点,问:是否存在点,使得和的面积满足?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于,两点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆: 的离心率为 ,点 为其下焦点,点为坐标原点,过 的直线 :(其中)与椭圆 相交于两点,且满足:.
(1)试用 表示 ;
(2)求 的最大值;
(3)若 ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为且与双曲线:有共同焦点.
(1)求椭圆的方程;
(2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值;
(3)设椭圆的左、右顶点分别为,过椭圆上的一点作轴的垂线交轴于点,若点满足,,连结交于点,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com