精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.

(1)),(2)

解析试题分析:(1)点的轨迹的方程,就是找出点横坐标与纵坐标的关系式,而条件中只有点为未知,可直接利用斜率公式化简,得点的轨迹的方程为,求出轨迹的方程后需结合变形过程及观察图像进行去杂,本题中分母不为零是限制条件,(2)本题难点在于对条件的转化,首先条件说明的是,其次条件揭示的是,两者结合转化为条件,到此原题就转化为:已知斜率为的过点直线被抛物线截得弦长为,求点的坐标.
试题解析:

(1)设点为所求轨迹上的任意一点,则由得,
,整理得轨迹的方程为).  3分
(2):学设可知直线
,故,即,   5分
直线OP方程为: ①; 直线QA的斜率为:
∴直线QA方程为:,即 ②
联立①②,得,∴点M的横坐标为定值.       8分
,得到,因为,所以
,得,∴的坐标为
∴存在点P满足的坐标为. 10分
考点:轨迹方程,直线与抛物线位置关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点A (p为常数,p>0),Bx轴负半轴上的一个动点,动点M使得|AM|=|AB|,且线段BM的中点Gy轴上.

(1)求动点M的轨迹C的方程;
(2)设EF为曲线C的一条动弦(EF不垂直于x轴),其垂直平分线与x轴交于点T(4,0),当p=2时,求|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.

(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQBQ与直线x=4分别交于MN两点,直线BM与椭圆的交点为D.求证,ADN三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆过点,离心率为.
(1)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截得线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆两点,直线与直线交于点.
(1)求椭圆的方程;
(2)求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线在点处的切线垂直相交于点,直线与椭圆相交于两点.

(1)求抛物线的焦点与椭圆的左焦点的距离;
(2)设点到直线的距离为,试问:是否存在直线,使得成等比数列?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点,动点轴上的正射影为点,且满足直线.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

同步练习册答案