已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-
,点P的轨迹为曲线C.![]()
(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M,N两点,直线BM与椭圆的交点为D.求证,A,D,N三点共线.
科目:高中数学 来源: 题型:解答题
如图,设椭圆
:![]()
的离心率
,顶点
的距离为
,
为坐标原点.![]()
(1)求椭圆
的方程;
(2)过点
作两条互相垂直的射线,与椭圆
分别交于
两点.
(ⅰ)试判断点
到直线
的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
、
为双曲线
:
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线
于点
,且
.圆
的方程是
.
(1)求双曲线
的方程;
(2)过双曲线
上任意一点
作该双曲线两条渐近线的垂线,垂足分别为
、
,求
的值;
(3)过圆
上任意一点
作圆
的切线
交双曲线
于
、
两点,
中点为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知F1,F2分别为椭圆C1:
=1(a>b>0)的上下焦点,其中F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
.![]()
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面五边形
关于直线
对称(如图(1)),
,
,将此图形沿
折叠成直二面角,连接
、
得到几何体(如图(2))![]()
(1)证明:
平面
;
(2)求平面
与平面
的所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点
的轨迹
的方程;
(2)若
是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是椭圆
的左、右顶点,椭圆
的离心率为
,右准线
的方程为
.![]()
(1)求椭圆方程;
(2)设
是椭圆
上异于
的一点,直线
交
于点
,以
为直径的圆记为
. ①若
恰好是椭圆
的上顶点,求
截直线
所得的弦长;
②设
与直线
交于点
,试证明:直线
与
轴的交点
为定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:![]()
的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com