如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.
(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线交于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线与轴的交点为定点,并求该定点的坐标.
(1) (2) ①②
解析试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,由可得值,(2) ①求圆被直线所截得弦长时,利用半径、半弦长、圆心到直线距离三者成勾股列等量关系,先分别确定直线的方程与圆K的方程,②证明直线与轴的交点为定点,实质为求直线与轴的交点.由①知,点是关键点,不妨设点的坐标作为参数,先表示直线的方程,与圆的方程联立解出点P的坐标.由得直线的斜率,从而得直线的方程,再令,得点R的横坐标为,利用点M满足化简得
试题解析:(1)由,解得,故
(2)①因为,所以直线的方程为,从而的方程为 6分
又直线的方程为,故圆心到直线的距离为 8分
从而截直线所得的弦长为 9分
②证:设,则直线的方程为,则点P的坐标为,又直线的斜率为,而,
所以,从而直线的方程为 12分
令,得点R的横坐标为 13分
又点M在椭圆上,所以,即,故,
所以直线与轴的交点为定点,且该定点的坐标为 15分
考点:椭圆方程,直线与圆锥曲线位置关系,圆的弦长
科目:高中数学 来源: 题型:解答题
设直线l:x-y+m=0与抛物线C:y2=4x交于不同两点A,B,F为抛物线的焦点.
(1)求△ABF的重心G的轨迹方程;
(2)如果m=-2,求△ABF的外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M,N两点,直线BM与椭圆的交点为D.求证,A,D,N三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线在点,处的切线垂直相交于点,直线与椭圆相交于,两点.
(1)求抛物线的焦点与椭圆的左焦点的距离;
(2)设点到直线的距离为,试问:是否存在直线,使得,,成等比数列?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)过点M(0,2)作直线与直线垂直,试判断直线与椭圆的位置关系5
(3)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆与双曲线有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线于M、N两点,且.
(1)求椭圆E的方程;
(2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com