精英家教网 > 高中数学 > 题目详情

已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)过点M(0,2)作直线与直线垂直,试判断直线与椭圆的位置关系5
(3)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。

(1)  ;(2)相切;(3) 存在,.

解析试题分析:(1)通过椭圆性质列出的方程,其中离心率,分析图形知道当点P在短轴端点时,面积取得最大值,所以,椭圆中,从而建立关于的方程,解出;即得到椭圆的标准方程(2)列出过定点直线的方程,其与直线垂直,求出其斜率,联立椭圆方程,得出,写出关系;(3)对于存在性的问题,要先假设存在,先设存在这样的点,结合图形知道要先讨论,当时,明显切线不垂直,当时,先设切线,与椭圆方程联立,利用,得出关于斜率的方程,利用两根之积公式,解出点坐标.即值.此题为较难题型,分类讨论时要全面.
试题解析:(1)因为点在椭圆上,所以
因此当时,面积最大,且最大值为
又离心率为
由于,解得
所求椭圆方程为.
(2)由(1)知,
直线的斜率等于,直线的方程
消去,整理得
直线与椭圆相切.
(3)假设直线上存在点满足题意,设,显然当时,从点所引的两条切线不垂直.
时,设过点向椭圆所引的切线的斜率为,则的方程为
消去,整理得:

所以,      *
设两条切线的斜率分别为,显然,是方程的两根,故:
解得:,点坐标为
因此,直线上存在两点满足题意.
考点:1.椭圆的性质与标准方程;2.直线垂直的判断;3.存在性问题的求解;4.直线与椭圆的位置关系的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点.
(1)求椭圆C的方程;
(2)设直线斜率为1,求线段的长;
(3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,左右焦点分别为,且.
(1)求椭圆C的方程;
(2)过点的直线与椭圆相交于两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为
(1)求椭圆C的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.

(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线轴的交点为定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶在坐标原点,焦点到直线的距离是
(1)求抛物线的方程;
(2)若直线与抛物线交于两点,设线段的中垂线与轴交于点 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与的值的关系;
(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,右焦点为,右顶点在圆上.
(Ⅰ)求椭圆和圆的方程;
(Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案