精英家教网 > 高中数学 > 题目详情

已知顶点是坐标原点,对称轴是轴的抛物线经过点
(1)求抛物线的标准方程;
(2)直线过定点,斜率为,当为何值时,直线与抛物线有公共点?

(1) ;(2) .

解析试题分析:(1)顶点是坐标原点,对称轴是轴的抛物线经过第四象限点,因此该抛物线开口向右,可设其标准方程为,利用抛物线过点可求出而得方程.
(2)点斜式写出直线的方程,当方程组有解时,直线与抛物线有公共点,故可在消去后利一元二次方程根的判别式求出的取值范围.
试题解析:解:(1)依题意设抛物线的方程为                  2分
点的坐标代入方程得
解得                                  5分
∴抛物线的标准方程                         6分
(2)直线的方程为,即                7分
解联立方程组,消去,得
,化简得              9分
①当,由①得代入,得
这时直线与抛物线有一个公共点                     11分
②当,依题意得
解得                         13分
综合①②,当时直线与抛物线有公共点                 14分
考点:1、抛物线的标准方程;2、直线与抛物线位置关系的判断;3、直线的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线(其中).
(1)若定点到双曲线上的点的最近距离为,求的值;
(2)若过双曲线的左焦点,作倾斜角为的直线交双曲线于两点,其中是双曲线的右焦点.求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的椭圆C:的一个焦点为F1(0,3),M(x,4)(x>0)为椭圆C上一点,△MOF1的面积为.
(1) 求椭圆C的方程;
(2) 是否存在平行于OM的直线l,使得直线l与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求以椭圆的焦点为焦点,且过点的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆 的离心率为 ,点 为其下焦点,点为坐标原点,过 的直线 (其中)与椭圆 相交于两点,且满足:.

(1)试用  表示
(2)求  的最大值;
(3)若 ,求  的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.
(1)若点中点,求直线的方程;
(2)设抛物线的焦点为,当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角三角形,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆上的点到其两焦点距离之和为,且过点
(Ⅰ)求椭圆方程;
(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,若,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案