如图,已知椭圆
:
的离心率为
,点
为其下焦点,点
为坐标原点,过
的直线
:
(其中
)与椭圆
相交于
两点,且满足:
.![]()
(1)试用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范围.
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为双曲线
的一个焦点,且两条曲线都经过点
.
(1)求这两条曲线的标准方程;
(2)已知点
在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动直线
与椭圆![]()
交于![]()
、![]()
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明
和
均为定值;
(2)设线段
的中点为
,求
的最大值;
(3)椭圆
上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别为
,离心率为
,P是椭圆上一点,且
面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知
分别是椭圆
的左、右焦点,椭圆
与抛物线
有一个公共的焦点,且过点
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
是椭圆
在第一象限上的任一点,连接
,过
点作斜率为
的直线
,使得
与椭圆
有且只有一个公共点,设直线
的斜率分别为
,
,试证明
为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作
,设
交
于点
,
证明:当点
在椭圆上移动时,点
在某定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率与等轴双曲线的离心率互为倒数,直线
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com