精英家教网 > 高中数学 > 题目详情
3.棱长均相等的四面体ABCD的外接球半径为1,则该四面体ABCD的棱长为$\frac{2\sqrt{6}}{3}$.

分析 将正四面体补成一个正方体,正四面体的外接球的直径为正方体的对角线长,即可得出结论.

解答 解:将正四面体补成一个正方体,则正方体的棱长为a,正方体的对角线长为$\sqrt{3}$a,
∵正四面体的外接球的直径为正方体的对角线长,∴正四面体的外接球的半径为$\frac{\sqrt{3}}{2}$a.
$\frac{\sqrt{3}}{2}a=1$,∴a=$\frac{2}{\sqrt{3}}$,则正四面体的棱长为$\sqrt{2}a$=$\frac{2\sqrt{6}}{3}$,
故答案为:$\frac{2\sqrt{6}}{3}$

点评 本题考查球的内接多面体等基础知识,考查运算求解能力,考查逻辑思维能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知直线l为曲线y=x2+x-2在点(1,0)处的切线,m为该曲线的另一条切线,且l⊥m
(1)求直线m的方程
 (2)求直线l、m和x轴所围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=-x3+2x2-x,则过点A(1,9)可以做曲线y=f(x)的几条切线(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,一辆汽车从O点出发沿一条直线公路以50千米/时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点O点的距离为5千米、距离公路线的垂直距离为3千米的M点的地方有一个人骑摩托车出发想把一件东西送给汽车司机,问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少千米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax2-bx+lnx,(a,b∈R).
(1)若a=1,b=3,求函数f(x)的单调递增区间;
(2)若b=0时,不等式f(x)≤0在[1,+∞)上恒成立,求实数a的取值范围;
(3)当a=1,b>$\frac{9}{2}$时,记函数f(x)的导函数f'(x)的两个零点是x1,x2(x1<x2),求证:f(x1)-f(x2)>$\frac{63}{16}$-3ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sin({ωx-\frac{π}{6}})+b$(ω>0),且函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当$x∈[{0,\frac{π}{4}}]$时,f(x)的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)的图象,若g(x)-3≤m≤g(x)+3在$x∈[{0,\frac{π}{3}}]$上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$cos(\frac{π}{3}+α)=\frac{1}{3}$,则$sin(\frac{5}{6}π+α)$=(  )
A..$\frac{1}{3}$B.$-\frac{1}{3}$C..$\frac{{2\sqrt{2}}}{3}$D..$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$cos({\frac{π}{4}-θ})=\frac{{\sqrt{2}}}{10}$,且θ∈(0,π).
(1)求$sin({\frac{π}{4}+θ})$的值;
(2)求sin4θ-cos4θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若$sinα+cosα=\sqrt{2}$,则$sin(α+\frac{π}{3})$=$\frac{\sqrt{2}+\sqrt{6}}{4}$.

查看答案和解析>>

同步练习册答案