精英家教网 > 高中数学 > 题目详情
2.已知-$\frac{5π}{2}$<α<-2π,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值为$-cos\frac{α}{2}$.

分析 利用二倍角的余弦函数化简表达式,求解即可.

解答 解:-$\frac{5π}{2}$<α<-2π,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+{cos}^{2}α-\frac{1}{2}}}$=$\sqrt{\frac{1}{2}+\frac{1}{2}cosα}$=$\sqrt{\frac{1}{2}+{cos}^{2}\frac{α}{2}-\frac{1}{2}}$=$\left|cos\frac{α}{2}\right|$=-cos$\frac{α}{2}$.
故答案为:-cos$\frac{α}{2}$.

点评 本题考查二倍角公式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知A={x|1<ax≤2},B={x|-1<x<1},A⊆B.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=4x3+ax+2,曲线y=f(x)在点P(0,2)处切线的斜率为-12,求:
(1)a的值;
(2)函数f(x)在区间[-3,2]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知两点A(4,-2),B(-4,4),C(1,1),过点C作$\overrightarrow{CD}$与$\overrightarrow{AB}$共线,且|$\overrightarrow{CD}$|=4,求D点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆M:x2+y2=10和圆N:x2+y2+2x+2y-14=0.求过两圆交点且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=|x-a+1|•ln(x+1),若对区间[1,2]上任意两个数x1,x2(x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则实数a的取值范围是3≤a≤2+2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在正三棱柱A1B1C1-ABC中,AB=AA1=1,边AB上有一点P,锐二面角P-A1C1-B1与P-B1C1-A1的大小分别为α、β,则tan(α+β)的最小值为-$\frac{8\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知a>0,b>0,x>0,y>0,证明:$\frac{x}{a}$+$\frac{y}{b}$≥$\frac{(\sqrt{x}+\sqrt{y})^{2}}{a+b}$;
(2)若2x2+y2=1,求$\frac{9}{2{x}^{2}}$+$\frac{1}{{y}^{2}}$的最小值;
(3)若当0<x<$\frac{1}{2}$时,关于x的不等式$\frac{2}{x}$+$\frac{1}{1-2x}$≥m2+8m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设α,β是两个不同的平面,l是一条直线,以下命题不正确的是(  )
①若l⊥α,α⊥β,则l?β         ②若l∥α,α∥β,则l?β
③若l⊥α,α∥β,则l⊥β         ④若l∥α,α⊥β,则l⊥β
A.①③B.②③④C.①②④D.①④

查看答案和解析>>

同步练习册答案